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Abstract

We investigate the non-linear forced responses of shallow suspended cables. We consider the following
cases: (1) primary resonance of a single in-plane mode and (2) primary resonance of a single out-of-plane
mode. In both cases, we assume that the excited mode is not involved in an autoparametric resonance with
any other mode. We analyze the system by following two approaches. In the first, we discretize the
equations of motion using the Galerkin procedure and then apply the method of multiple scales to the
resulting system of non-linear ordinary-differential equations to obtain approximate solutions (discretiza-
tion approach). In the second, we apply the method of multiple scales directly to the non-linear integral-
partial-differential equations of motion and associated boundary conditions to determine approximate
solutions (direct approach). We then compare results obtained with both approaches and discuss the
influence of the number of modes retained in the discretization procedure on the predicted solutions.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Suspended cables are key components in many mechanical systems and civil structures, and
therefore understanding their behaviors under different load conditions is of great importance to
engineers. In general, analytical solutions of non-linear systems are very scarce and often
computational methods are required to determine the responses of such systems. When the non-
linearity is ‘‘weak’’, asymptotic methods can be used to determine approximate analytical
solutions of the system responses. These solutions, although not exact, are important because they
can give general information about the system behavior for different parameter values.
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There are two popular approaches to calculating approximate analytical solutions of weakly
non-linear distributed-parameter systems. In the first, the equations of motion are discretized by
using a weighted-residual technique, and then the resulting non-linear ordinary-differential set of
equations is solved using an asymptotic technique. In the second, solutions are calculated by
applying an asymptotic technique directly to the governing partial-differential system and
associated boundary conditions.
A common practice among many researchers who use the first approach is to perform the

discretization by using a single mode or, when autoparametric resonances are present, a few
modes. By means of several examples, Nayfeh and coworkers [1–8] have demonstrated that this
reduced-order discretization approach can yield incorrect results. Pakdemirli and Boyaci [9]
further investigated this problem for a general distributed-parameter system with quadratic and
cubic non-linearities.
The forced planar dynamics of suspended cables near primary resonance were investigated by

Benedettini and Rega [10]. They used a single-mode Galerkin discretization and then applied the
method of multiple scales to calculate a fourth order asymptotic expansion of the solution. They
found out that the response may be either hardening or softening, depending on the amplitude of
oscillation. Rega et al. [7] investigated the primary resonance of the first in-plane mode of a
suspended cable. They considered both the discretization and direct approaches and found that,
when only a few number of modes is used in the reduced-order model, the results of the two
approaches tend to deviate from each other. The out-of-plane oscillations of suspended cables to
in-plane excitations were considered by Takahashi and Konishi [11]. They used a full-basis
Galerkin discretization and then applied the method of harmonic balance to investigate regions of
instability for several principal parametric and combination parametric resonances.
In this work, we use the method of multiple scales to investigate the responses of suspended

cables to primary resonance excitations. We present analyses for both the direct and discretization
approaches. We consider cases where the directly excited mode (be it in-plane or out-of-plane) is
not involved in an autoparametric resonance with other modes. We then compare results of both
approaches and explore the consequences of using only a few number of modes in the Galerkin
discretization.

2. Problem formulation

Taking the cable span l as the characteristic length and tn ¼ l=2p
ffiffiffiffiffiffiffiffiffiffiffi
m=H

p
as the characteristic

time, we express the non-dimensional non-planar equations of motion for a shallow suspended
elastic cable (see Fig. 1) as [12,13]

.u1 þ 2c1 ’u1 � u00
1 ¼ aðu001 þ by00Þ

Z 1

0

by0u01 þ
1

2
ðu02

1 þ u02
2 Þ

� �
dx þ f1ðtÞ; ð1Þ

.u2 þ 2c2 ’u2 � u00
2 ¼ au002

Z 1

0

by0u01 þ
1

2
ðu021 þ u02

2 Þ
� �

dx þ f2ðtÞ; ð2Þ

where yðxÞ ¼ �4xð1� xÞ and the boundary conditions are

u1 ¼ u2 ¼ 0 at x ¼ 0 and x ¼ 1: ð3Þ
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The overdot and prime indicate the derivatives with respect to the non-dimensional time t and
position x; respectively, u1ðx; tÞ and u2ðx; tÞ denote the non-dimensional in-plane and out-of-plane
displacements, m is the mass per unit length, b the non-dimensional cable sag, E is Young’s
modulus, A the cross-sectional area, the ci are the non-dimensional viscous damping coefficients,
the fiðtÞ are the non-dimensional external excitations, g is acceleration due to gravity, H the
horizontal component of the cable tension, and

a ¼
EA

H
¼

8bEA

mgl
: ð4Þ

Dropping the forcing, damping, and non-linear terms in Eqs. (1) and (2), we obtain the
linearized equations of motion:

.u1 � u001 ¼ aby00
Z 1

0

by0u0
1 dx; ð5Þ

.u2 � u00
2 ¼ 0: ð6Þ

Solving Eqs. (3), (5), and (6), we determine the mode shapes and natural frequencies of the cable
[14]. For the out-of-plane motion, the nth mode shape and corresponding natural frequency are
given by

cnðxÞ ¼
ffiffiffi
2

p
sinðlnxÞ and ln ¼ np; n ¼ 1; 2; 3;y; ð7Þ

where the mode shape is normalized so that
R 1
0 c

2
n dx ¼ 1: For the in-plane motion, the nth

antisymmetric (n ¼ even) mode shape and corresponding natural frequency are given by

fnðxÞ ¼
ffiffiffi
2

p
sinðonxÞ and on ¼ np; ð8Þ

and the nth symmetric (n ¼ odd) mode shape is given by

fnðxÞ ¼ kn 1� cosðonxÞ � tan
on

2

� �
sinðonxÞ

h i
: ð9Þ
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Fig. 1. A schematic of a suspended cable under external excitations.
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The corresponding natural frequency on is determined from

tan
on

2

� �
¼

on

2

� �
�

1

16ab2

on

2

� �3
ð10Þ

and kn is chosen such that
R 1
0 f

2
nðxÞ dx ¼ 1; yielding

kn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2on cos

2ðon=2Þ
ð2þ cosonÞon � 3 sinon

s
: ð11Þ

From Eq. (10), we note that the natural frequencies of the symmetric in-plane modes vary with
ab2: This results in the crossover points ab2n ¼ ðnpÞ2=16; n ¼ 1; 2; 3;y; where the one-to-one and
two-to-one autoparametric resonances o2n�1E2ln ¼ o2n ¼ l2n occur simultaneously. In Fig. 2,
we present the first few natural frequencies as functions of ab2 and indicate the first three
crossover points.

3. Galerkin discretization procedure

To analyze the non-linear responses of this system, we first discretize Eqs. (1) and (2) using the
mode shapes of the linearized problem. To this end, we express the in-plane and out-of-plane
displacements u1 and u2 as

u1ðx; tÞ ¼
XN
n¼1

fnðxÞZnðtÞ; ð12Þ
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Fig. 2. Variation of the first few non-dimensional natural frequencies and mode shapes with ab2:
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u2ðx; tÞ ¼
XN
n¼1

cnðxÞznðtÞ; ð13Þ

where the ZnðtÞ and znðtÞ are generalized co-ordinates. Next, we substitute Eqs. (12) and (13) into
Eqs. (1) and (2), multiply, respectively, by the mode shape functions fkðxÞ and clðxÞ; integrate the
outcomes over xA½0; 1�; and obtain the following system of non-linear ordinary-differential
equations for the ZkðtÞ and zlðtÞ:

.Zk þ 2m1k ’Zk þ o2
kZk ¼

ab

2

XN
n¼1

XN
r¼1

½ðUkPnr þ 2PknUrÞZnZr�

þ
ab

2

XN
n¼1

XN
r¼1

½ðUkQnrÞznzr� �
a
2

XN
n¼1

XN
r¼1

XN
j¼1

½ðPknPrjÞZnZrZj�

�
a
2

XN
n¼1

XN
r¼1

XN
j¼1

½ðPknQrjÞZnzrzj� þ f1kðtÞ: ð14Þ

.zl þ 2m2l
’zl þ l2l zl ¼ ab

XN
n¼1

XN
r¼1

½ðQlnUrÞznZr� �
a
2

XN
n¼1

XN
r¼1

XN
j¼1

½ðQlnPrjÞznZrZj�

�
a
2

XN
n¼1

XN
r¼1

XN
j¼1

½ðQlnQrjÞznzrzj� þ f2lðtÞ; ð15Þ

where k; l ¼ 1; 2; 3;y; m1k ¼
R 1
0 c1f

2
k dx; m2l ¼

R 1
0 c2c

2
l dx; and

Un ¼
Z 1

0

fny00 dx ¼ �
Z 1

0

f0
ny0 dx ¼

kno2
n

8ab2
for n ¼ odd;

0 for n ¼ even;

8<
: ð16Þ

Prj ¼
Z 1

0

f0
rf

0
j dx ¼ �

Z 1

0

f00
rfj dx

¼

�
krkjo2

ro
2
j

64ab2
for r; j ¼ odd; and raj;

k2rorðor � sinorÞ
2 cos2ðor

2
Þ

for r ¼ j ¼ odd;

0 for r; j ¼ even and raj;

o2
r for r ¼ j ¼ even;

0 for r ¼ odd; j ¼ even and vice versa;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð17Þ

Qrj ¼
Z 1

0

c0
rc

0
j dx ¼ �

Z 1

0

c00
rcj dx ¼

l2r for 8r ¼ j;

0 for 8r; j and raj;

(
ð18Þ

ARTICLE IN PRESS

H.N. Arafat, A.H. Nayfeh / Journal of Sound and Vibration 266 (2003) 325–354 329



f1nðtÞ ¼ f1ðtÞ
Z 1

0

fn dx ¼
kno2

n

64ab2
f1ðtÞ for n ¼ odd;

0 for n ¼ even;

8<
: ð19Þ

f2nðtÞ ¼ f2ðtÞ
Z 1

0

cn dx ¼
2
ffiffiffi
2

p
ln

f2ðtÞ for n ¼ odd;

0 for n ¼ even:

8><
>: ð20Þ

Eqs. (14) and (15) constitute two infinite sets of non-linearly coupled ordinary-differential
equations that describe the non-planar dynamical behavior of the cable. For all practical
purposes, one usually truncates Eqs. (14) and (15) by considering the contributions from K in-
plane modes and L out-of-plane modes. This reduces the problem to solving a set of K þ L non-
linear equations. The values of K and L are usually chosen by trial and error and are verified by
testing the convergence of the solutions.
When a specific mode is directly excited and if it is not involved in an autoparametric resonance

with any other mode, it is common practice to employ a single-mode discretization. That is, if the
mth in-plane mode is the only one being excited, then one lets u2ðx; tÞ ¼ 0 and u1ðx; tÞ ¼
fmðxÞZmðtÞ in Eq. (1) and obtains the following equation for ZmðtÞ:

.Zm þ 2m1m ’Zm þ o2
mZm ¼ 3

2
abUmPmmZ2m � 1

2
aP2

mmZ
3
m þ f1mðtÞ: ð21Þ

Similarly, if the sth out-of-plane mode is the only one being excited, then one lets u1ðx; tÞ ¼ 0 and
u2ðx; tÞ ¼ csðxÞzsðtÞ in Eq. (2) and obtains the following equation for zsðtÞ:

.zs þ 2m2s
’zs þ l2szs ¼ �1

2 aQ2
ssz

3
s þ f2sðtÞ: ð22Þ

The questions we wish to answer here are: how much do the neglected modes contribute to the
cable response? How do the solutions of the discretized system compare with the solutions
obtained by directly attacking the original integral-partial-differential system?

4. Method of multiple scales

In order to answer these questions, we next seek solutions of this weakly non-linear system by
using perturbation techniques [15]. In particular, we use the method of multiple scales to conduct
the analyses. Two approaches are discussed and compared: (1) solving the original integral-
partial-differential system directly and (2) solving the discretized system. In this section, we
present the basis for both approaches and in Sections 5 and 6, we solve the specific cases of
primary resonance of an in-plane mode and primary resonance of an out-of-plane mode,
respectively.

4.1. Solving the partial-differential system directly: ‘‘direct approach’’

To apply the method of multiple scales, we introduce the non-dimensional parameter e51
for bookkeeping purposes and define the fast time scale T0 ¼ t and the slow time scales T1 ¼ et
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and T2 ¼ e2t: Consequently, the first and second derivatives with respect to time are

d

dt
¼ D0 þ eD1 þ e2D2 þ?;

d2

dt2
¼ D2

0 þ 2eD0D1 þ e2ðD2
1 þ 2D0D2Þ þ?; ð23Þ

where Dn 
 @=@Tn: In addition, we scale the damping and forcing terms so that their influence
balances the influence of the non-linearities. Hence, we set cj-e2cj and fjðtÞ-e3fjðtÞ in Eqs. (1)
and (2). Next, we express the displacements as

u1ðx; tÞ ¼ eu11ðx;T0;T1;T2Þ þ e2u12ðx;T0;T1;T2Þ þ e3u13ðx;T0;T1;T2Þ þ?; ð24Þ

u2ðx; tÞ ¼ eu21ðx;T0;T1;T2Þ þ e2u22ðx;T0;T1;T2Þ þ e3u23ðx;T0;T1;T2Þ þ?; ð25Þ

in Eqs. (1)–(3), use Eqs. (23), separate terms of equal powers in e; and obtain:
Order e:

D2
0u11 � u0011 � ab2y00

Z 1

0

y0u0
11 dx ¼ 0; ð26Þ

D2
0u21 � u0021 ¼ 0: ð27Þ

Order e2:

D2
0u12 � u0012 � ab2y00

Z 1

0

y0u0
12 dx ¼ � 2D0D1u11 þ abu0011

Z 1

0

y0u0
11 dx

þ
1

2
aby00

Z 1

0

u02
11 dx þ

1

2
aby00

Z 1

0

u0221 dx; ð28Þ

D2
0u22 � u00

22 ¼ �2D0D1u21 þ abu0021

Z 1

0

y0u011 dx: ð29Þ

Order e3:

D2
0u13 � u0013 � ab2y00

Z 1

0

y0u0
13 dx ¼ � D2

1u11 � 2D0D2u11 � 2D0D1u12 � 2c1D0u11

þ abu0011

Z 1

0

y0u0
12 dx þ abu0012

Z 1

0

y0u0
11 dx

þ
1

2
au0011

Z 1

0

u0211 dx þ aby00
Z 1

0

u0
11u

0
12 dx

þ
1

2
au0011

Z 1

0

u0221 dx þ aby00
Z 1

0

u0
21u

0
22 dx

þ f1ðT0Þ; ð30Þ
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D2
0u23 � u00

23 ¼ � D2
1u21 � 2D0D2u21 � 2D0D1u22 � 2c2D0u21

þ abu0021

Z 1

0

y0u012 dx þ abu0022

Z 1

0

y0u011 dx

þ
1

2
au0021

Z 1

0

u0211 dx þ
1

2
au0021

Z 1

0

u0221 dx

þ f2ðT0Þ: ð31Þ

The equations are subject to the boundary conditions

ujkð0;T0;T1;T2Þ ¼ ujkð1;T0;T1;T2Þ ¼ 0; j; k ¼ 1; 2; 3: ð32Þ

The general solutions of Eqs. (26), (27), and (32) can be expressed as

u11ðx;T0;T1;T2Þ ¼
XN
k¼1

fkðxÞ½AkðT1;T2ÞeiokT0 þ %AkðT1;T2Þe�iokT0 �; ð33Þ

u21ðx;T0;T1;T2Þ ¼
XN
l¼1

clðxÞ½BlðT1;T2ÞeillT0 þ %BlðT1;T2Þe�illT0 �; ð34Þ

where the fkðxÞ and clðxÞ are the linear mode shapes, defined by Eqs. (7)–(9), the ok and ll are the
corresponding natural frequencies, the Ak and Bl are slowly time-varying complex-valued
functions, and the %Ak and %Bl are their complex conjugates. In terms of real-valued amplitude and
phase functions,

AkðT1;T2Þ ¼ 1
2

akðT1;T2ÞeibkðT1;T2Þ and BlðT1;T2Þ ¼ 1
2
#alðT1;T2Þei

#bl ðT1;T2Þ: ð35Þ

4.2. Solving the discretized system: ‘‘discretization approach’’

Using the previously defined time scales and bookkeeping parameter e; we express the
generalized co-ordinates ZkðtÞ and zlðtÞ as

Zkðt; eÞ ¼ eZk1ðT0;T1;T2Þ þ e2Zk2ðT0;T1;T2Þ þ e3Zk3ðT0;T1;T2Þ þ?; ð36Þ

zlðt; eÞ ¼ ezl1ðT0;T1;T2Þ þ e2zl2ðT0;T1;T2Þ þ e3zl3ðT0;T1;T2Þ þ? ð37Þ

in Eqs. (14) and (15). Then, we use Eqs. (23), set mjk-e2mjk and fjkðtÞ-e3fjkðtÞ; separate terms of
equal powers of e; and obtain the following:

Order e:

D2
0Zk1 þ o2

kZk1 ¼ 0; ð38Þ

D2
0zl1 þ l2l zl1 ¼ 0: ð39Þ

ARTICLE IN PRESS

H.N. Arafat, A.H. Nayfeh / Journal of Sound and Vibration 266 (2003) 325–354332



Order e2:

D2
0Zk2 þ o2

kZk2 ¼ � 2D0D1Zk1 þ
1

2
ab
XN
n¼1

XN
r¼1

½ðUkQnrÞzn1zr1�

þ
1

2
ab
XN
n¼1

XN
r¼1

½ðUkPnr þ 2PknUrÞZn1Zr1�; ð40Þ

D2
0zl2 þ l2l zl2 ¼ �2D0D1zl1 þ ab

XN
n¼1

XN
r¼1

½ðQlnUrÞzn1Zr1�: ð41Þ

Order e3:

D2
0Zk3 þ o2

kZk3 ¼ � D2
1Zk1 � 2D0D2Zk1 � 2D0D1Zk2 � 2m1kD0Zk1

þ
1

2
ab
XN
n¼1

XN
r¼1

½ðUkPnr þ 2PknUrÞðZn1Zr2 þ Zn2Zr1Þ�

þ
1

2
ab
XN
n¼1

XN
r¼1

½ðUkQnrÞðzn1zr2 þ zn2zr1Þ�

�
1

2
a
XN
n¼1

XN
r¼1

XN
j¼1

½ðPknPrjÞZn1Zr1Zj1�

�
1

2
a
XN
n¼1

XN
r¼1

XN
j¼1

½ðPknQrjÞZn1zr1zj1� þ f1kðT0Þ; ð42Þ

D2
0zl3 þ l2l zl3 ¼ � D2

1zl1 � 2D0D2zl1 � 2D0D1zl2 � 2m2lD0zl1

þ ab
XN
n¼1

XN
r¼1

½ðQlnUrÞðzn1Zr2 þ zn2Zr1Þ�

�
1

2
a
XN
n¼1

XN
r¼1

XN
j¼1

½ðQlnPrjÞzn1Zr1Zj1�

�
1

2
a
XN
n¼1

XN
r¼1

XN
j¼1

½ðQlnQrjÞzn1zr1zj1� þ f2lðT0Þ: ð43Þ

The general solutions of Eqs. (38) and (39) can be expressed as

Zk1ðT0;T1;T2Þ ¼ AkðT1;T2ÞeiokT0 þ cc 8k; ð44Þ

zl1ðT0;T1;T2Þ ¼ BlðT1;T2ÞeillT0 þ cc 8l: ð45Þ

where cc stands for the complex conjugate of the preceding terms.
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5. Primary resonance of an in-plane mode

We consider here the cable’s response when the mth in-plane mode is excited near primary
resonance. Because we are assuming that the mth mode is not involved in an autoparametric
resonance with any of the other modes and since damping is present in the system, the free
responses of the rest of the modes are assumed to die out after a long time [16].

5.1. Direct approach

In this case, we set

u11ðx;T0;T1;T2Þ ¼ fmðxÞ½AmðT1;T2ÞeiomT0 þ %AmðT1;T2Þe�iomT0 �; ð46Þ

u21ðx;T0;T1;T2Þ ¼ 0; ð47Þ

f1ðT0Þ ¼ F1 cosðOT0Þ; f2ðT0Þ ¼ 0 ð48; 49Þ

and introduce the detuning parameter s such that

O ¼ om þ e2s: ð50Þ

Substituting Eq. (47) into Eqs. (29) and (31), we find that u22 ¼ 0 and u23 ¼ 0; and therefore the
out-of-plane displacement u2ðx; tÞ ¼ 0: Next, we substitute Eq. (46) into Eq. (28), use Eqs. (16)
and (17), and obtain

D2
0u12 � u0012 � ab2y00

Z 1

0

y0u0
12 dx ¼ ab

1

2
y00Pmm � f00

mUm

� �
½ðA2

me
2iomT0 þ ccÞ þ 2Am %Am�

� 2iomfm

@Am

@T1
eiomT0 þ cc

� �
: ð51Þ

To avoid the presence of secular terms in the solution, we need to set @Am=@T1 ¼ 0; that is,
Am ¼ AmðT2Þ only. Consequently, the solution of Eq. (51) is given by

u12ðx;T0;T2Þ ¼ G1ðxÞðA2
me

2iomT0 þ ccÞ þ G2ðxÞAm %Am; ð52Þ

where G1ðxÞ and G2ðxÞ are governed by the following boundary-value problems:

G00
1 þ 4o2

mG1 þ ab2y00
Z 1

0

y0G0
1 dx ¼ �ab

1

2
y00Pmm � Umf

00
m

� �
;

G1ð0Þ ¼ G1ð1Þ ¼ 0; ð53Þ

G00
2 þ ab2y00

Z 1

0

y0G0
2 dx ¼ �2ab

1

2
y00Pmm � Umf

00
m

� �
;

G2ð0Þ ¼ G2ð1Þ ¼ 0: ð54Þ

In Appendix A, we present the solutions of Eqs. (53) and (54).
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Next, we substitute Eqs. (46) and (52) into Eq. (30), use Eq. (50), and obtain

D2
0u13 � u0013 � ab2y00

Z 1

0

y0u013 dx

¼ �2iomfm

dAm

dT2
þ c1Am

� �
þ

1

2
F1e

isT2

�

þ ab y00
Z 1

0

f0
mG0

1 dx þ f00
m

Z 1

0

y0G0
1 dx

�

þ G00
1

Z 1

0

y0f0
m dx þ y00

Z 1

0

f0
mG0

2 dx

þ f00
m

Z 1

0

y0G0
2 dx þ G00

2

Z 1

0

y0f0
m dx

�
A2

m
%Am

þ
3

2
a f00

m

Z 1

0

f02
m dx

� �
A2

m
%Am

�
eiomT0 þ cc þ NST


 Gðx;T2ÞeiomT0 þ cc þ NST ; ð55Þ

where NST stands for the terms that do not produce secular terms. Then, letting

u13ðx;T0;T2Þ ¼ G3ðx;T2ÞeiomT0 þ cc þ NST ð56Þ

in Eq. (55), we obtain

@2G3

@x2
þ o2

mG3 þ ab2y00
Z 1

0

y0 @G3

@x
dx ¼ �Gðx;T2Þ; G3ð0Þ ¼ G3ð1Þ ¼ 0: ð57Þ

The homogeneous problem in Eq. (57) has non-trivial solutions. Therefore, the non-homogeneous
problem has solutions provided that a solvability condition is met. To determine this condition,
we multiply Eq. (57) by the adjoint function g3ðxÞ; integrate the outcome by parts from x ¼ 0 to 1,
and obtain

g3
@G3

@x
� ab2y0g3

Z 1

0

y00G3 dx

� �1
0

þ
Z 1

0

G3 g00
3 þ o2

mg3 þ ab2y00
Z 1

0

g03y
0 dx

� �
dx

¼ �
Z 1

0

g3G dx: ð58Þ

The adjoint is determined by considering the homogeneous problem in Eq. (58), which is the same
as the linear eigenvalue problem. Therefore, we find that g3ðxÞ ¼ fmðxÞ; and consequently Eq. (58)
reduces to the solvability conditionZ 1

0

fmðxÞGðx;T2Þ dx ¼ 0: ð59Þ

Using Eqs. (16), (17), and (55), we obtain the following equation for AmðT2Þ:

2iom

dAm

dT2
þ m1mAm

� �
þ Gn

emA2
m
%Am ¼

1

2
F1me

isT2 ; ð60Þ

ARTICLE IN PRESS

H.N. Arafat, A.H. Nayfeh / Journal of Sound and Vibration 266 (2003) 325–354 335



where F1m ¼ F1

R 1
0 fm dx and the coefficient Gn

em of the effective non-linearity for the mth in-plane
mode is given by

Gn

em ¼
3

2
aP2

mm � ab

Z 1

0

½ð2Umf
0
m � Pmmy0ÞðG0

1 þ G0
2Þ� dx: ð61Þ

When the mth in-plane mode is symmetric (m ¼ odd), the final expression for Gn
em becomes

Gn

em ¼
3

2
aP2

mm � 8a2b2P2
mm

½ð48ab2 þ 3� 2o2
mÞom cosom � 3ð16ab2 þ 1Þ sinom�

cosomð16ab2 þ 3Þ½16ab2ðom � tanomÞ � o3
m�

� �

�
1

24
aPmmUmkm 64ab2 �

ð16ab2 � 33Þo2
m

ð16ab2 þ 3Þ
�
64ab2 tanom

om

(

þ
sin2ðom

2
Þð64ab2 � o2

mÞ½16ab2ðom � tanomÞ þ o3
m�

cosom½16ab2ðom � tanomÞ � o3
m�

)

�
1

288
aomU2

mk
2
m

480ab2om

cos2ðom

2
Þ
þ

o2
m sin4ðom

2
Þð64ab2 � o2

mÞ
2

cos2 om½16ab2ðom � tanomÞ � o3
m�

(

�
54o3

m

ð16ab2 þ 3Þ
þ

ð64ab2om � o3
mÞð4� 19 cosomÞ

2 cosom

)
; ð62Þ

where km; Um; and Pmm are defined by Eqs. (11), (16), and (17). On the other hand, when the mth
mode is antisymmetric ðm ¼ evenÞ; Um ¼ 0 and the expression for Gn

em reduces to

Gn

em ¼
3

2
am4p4 �

8a2b2m4p4ð48ab2 þ 3� 2m2p2Þ
ð16ab2 þ 3Þð16ab2 � m2p2Þ

: ð63Þ

Substituting the results obtained for the ujk back into Eqs. (24) and (25), using Eq. (35), and
setting Tn ¼ ent; the response of the system to second order in e is given by u2ðx; tÞ ¼ Oðe3Þ and

u1ðx; tÞ ¼ efmðxÞam cosðomt þ bmÞ

þ 1
2
e2a2m½G1ðxÞ cosð2omt þ 2bmÞ þ

1
2

G2ðxÞ� þ Oðe3Þ: ð64Þ

We note that, by virtue of Eq. (10), as om-on=2; the term ½16ab2ðom � tanomÞ � o3
m�-0 and

Eq. (62) becomes singular. Moreover, Eq. (63) becomes singular when ab2-m2p2=16; which are
the even crossover points (see Fig. 2); these correspond to the autoparametric resonances
o2m�1E2om; m ¼ 2; 4;y . Resonance conditions such as the ones occurring in Eqs. (62) and (63)
are clearly demonstrated in the results obtained by applying the discretization approach, as is
presented next.

5.2. Discretization approach

In this case, we set

Zm1 ¼ AmðT1;T2ÞeiomT0 þ cc; ð65Þ

Zk1 ¼ 0 8kam; ð66Þ
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zl1 ¼ 0 8l; ð67Þ

f1kðT0Þ ¼ F1k cosðOT0Þ 8k; ð68Þ

f2lðT0Þ ¼ 0 8l; ð69Þ

where O is related to om by Eq. (50). We substitute Eqs. (65)–(67) into Eqs. (40) and (41),
determine that @Am=@T1 ¼ 0; solve for the Zk2 and zl2; and obtain

Zk2 ¼ E1kðA2
me

2iomT0 þ ccÞ þ E2kAm %Am 8k; ð70Þ

zl2 ¼ 0 8l; ð71Þ

where

E1k ¼
1

2
ab

UkPmm þ 2PkmUm

o2
k � 4o2

m

� �
and E2k ¼ ab

UkPmm þ 2PkmUm

o2
k

� �
: ð72Þ

We note from Eqs. (70) and (72) that this solution breaks down when okE2om; a two-to-one
autoparametric resonance between two in-plane modes.
To determine AmðT2Þ; we set k ¼ m in Eq. (42), use Eqs. (66)–(68) and (71), and obtain

D2
0Zm3 þ o2

mZm3 ¼ � 2D0D2Zm1 � 2m1mD0Zm1

þ
1

2
ab
XN
r¼1

½ðUmPmr þ 2PmmUrÞZm1Zr2�

þ
1

2
ab
XN
n¼1

½ðUmPnm þ 2PmnUmÞZm1Zn2�

�
1

2
aP2

mmZ
3
m1 þ F1m cosðOT0Þ: ð73Þ

Then, substituting for the Zm1 and Zk2 from Eqs. (65) and (70), using Eq. (50), and setting
the terms that produce secular terms equal to zero, we obtain the following equation for
AmðT2Þ:

2iom

dAm

dT2
þ m1mAm

� �
þ GemA2

m
%Am ¼

1

2
F1me

isT2 ; ð74Þ

where the coefficient Gem of the effective non-linearity of the mth in-plane mode is given by

Gem ¼
3

2
aP2

mm �
1

2
a2b2

XN
r¼1

ðUrPmm þ 2PrmUmÞ
2 3o2

r � 8o2
m

o2
r ðo2

r � 4o2
mÞ

� �� �
: ð75Þ
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If the mth mode is symmetric (i.e., m ¼ odd), then after substituting for the Uk and Prj ; we find
that Eq. (75) becomes

Gem ¼
3

2
a�

15k2mo
2
m

128b2

� �
k4mo

2
mðom � sinomÞ

2

4 cos4ðom

2
Þ

�
XN

r¼odd
ram

k2rk
4
mo

2
ro

2
mð3o

2
r � 8o2

mÞ
524 288a2b6ðo2

r � 4o2
mÞ cos4ð

om

2
Þ

�

� ½32ab2 sinom � 32ab2om þ ð1þ cosomÞo3
m�

2

�
: ð76Þ

On the other hand, if the mth mode is antisymmetric (i.e., m ¼ even), then Eq. (75) reduces to the
expression

Gem ¼
3

2
am4p4 �

m4p4

128b2

XN
r¼odd

k2ro
2
r ð3o

2
r � 8m2p2Þ

ðo2
r � 4m2p2Þ

� �
: ð77Þ

Looking at the expressions for the effective non-linearities in Eqs. (76) and (77), we note that
they consist of two parts. The first part is the effective non-linearity one would obtain if a single-
mode discretization is used. The second part is the summation of the contributions of all of the
other modes to the effective non-linearity of the mth mode. In this case, we note that only the
symmetric modes contribute. Substituting the results obtained for the Zkj and zlj back into
Eqs. (36) and (37), using Eqs. (12), (13), and (35), and setting Tn ¼ ent; we obtain the system’s
response to second-order in e as u2ðx; tÞ ¼ Oðe3Þ and

u1ðx; tÞ ¼ efmðxÞam cosðomt þ bmÞ

þ
1

2
e2a2m

XN
r¼odd

frðxÞ E1r cosð2omt þ 2bmÞ þ
1

2
E2r

� �� �
þ Oðe3Þ: ð78Þ

Comparing Eqs. (64) and (78), we find that the solutions from both approaches are equivalent ifP
N

r¼odd E1rfrðxÞ ¼ G1ðxÞ and
P

N

r¼odd E2rfrðxÞ ¼ G2ðxÞ; in agreement with the general results of
Pakdemirli and Boyaci [9].

5.3. Results and comparison

When Gem;Gn
em > 0; the frequency–response curves are bent to the right and the effective non-

linearity is of the ‘‘hardening’’ type. On the other hand, when Gem;Gn
emo0; the frequency–response

curves are bent to the left and the effective non-linearity is of the ‘‘softening’’ type [16].
As an example, we consider a cable for which a ¼ 239:16 and investigate the influence of the

number of modes retained in Eqs. (76) and (77) on the value of the coefficient Gem of the effective
non-linearity. These results are also compared to their corresponding values of Gn

em; evaluated
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from Eqs. (62) and (63), by calculating the percent errors:

Eem 

ðGn

em � GemÞ
Gn

em

����
����� 100%: ð79Þ

We consider the primary resonance of the first symmetric in-plane mode (i.e., m ¼ 1) and the
primary resonance of the first antisymmetric in-plane mode (i.e., m ¼ 2). Because the natural
frequencies of the symmetric in-plane modes vary as a function of ab2; we present results for three
cases: ab2 ¼ 1

2
(left of first crossover), ab2 ¼ 2 (right of first crossover), and ab2 ¼ 4 (right of

second crossover). The corresponding values of the sag-to-span ratio b ¼ #b=l are approximately
1

21:9;
1

10:9; and
1
7:7; respectively, which are acceptable for the ‘‘shallow’’ suspended cable theory [14].

5.3.1. First symmetric in-plane mode: OEo1

In Fig. 3, we present variation of Ge1 and corresponding percent error when ab2 ¼ 1
2
(left of first

crossover) with the number of modes retained in Eq. (76). Using a single-mode discretization,
Ge1 ¼ �113 640:7: If, instead, both modes 1 and 3 are used in the discretization, Ge1 increases to
�112 866:2: As more modes are included in the discretization, Ge1 monotonously converges onto
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the correct value. When 15 modes are retained in the discretization, Ge1 ¼ �116 871:7: The value
obtained by the direct approach is Gn

e1 ¼ �116 878:2: The percent errors when using single-, two-,
three-, and ten-mode discretizations are Ee1 ¼ 2.8%, 3.4%, 0.8%, and 0.019%, respectively.
Choosing ab2 ¼ 2 (right of first crossover), we present in Fig. 4 the variation of Ge1 and the

corresponding percent error with the number of modes retained. The value obtained by the direct
approach is Gn

e1 ¼ �113 146:7: Switching from a single-mode to a two-mode discretization, we
find that Ge1 jumps from �86 661:5 to �137 601:1; which is beyond the true value. In this case, the
percent errors when using single-, two-, three-, and ten-mode discretizations are 23.4%, 21.6%,
3.3%, and 0.046%, respectively.
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Lastly, we choose ab2 ¼ 4 (right of second crossover) and present in Fig. 5 the variation of Ge1

and the corresponding percent error with the number of modes retained. The value obtained by
the direct approach is Gn

e1 ¼ 4 654 599:6: Using single- and two-mode discretizations, we find that
the corresponding values of Ge1 ¼ 1 345 575:9 and 1 356 450:4; which are relatively close to each
other, but quite off the correct value. However, as we include more modes, a sharp jump in the
value of Ge1 occurs, and after 15 modes, Ge1 converges to 4 654 795:8: The percent errors when
using single-, two-, three-, and ten-mode discretizations are 71.1%, 70.9%, 2.1%, and 0.02%.
From Figs. 3 and 4, we note that the final values of Ge1o0; and therefore the effective non-

linearity for the first symmetric in-plane mode for these two cases is softening. From Fig. 5, we
note that the final value of Ge1 > 0; indicating that for this case, the effective non-linearity of the
first mode is hardening. Moreover, from Figs. 4 and 5, we find that using single- and two-mode
discretizations results in significant quantitative errors.
In Fig. 6, we show the influence of ab2 on Ge1 when using the direct and discretization

approaches; results for single-, two-, three-, and five-mode discretizations are presented. The
results of Gn

e1 from the direct approach contain several singularities corresponding to the
autoparametric resonances orE2o1; r ¼ 3; 5;y . For ab2A½0; 10�; the resonance o3E2o1 occurs
once, whereas the resonance o5E2o1 occurs twice. If one uses single-mode or two-mode
discretizations, significant deviations between the values of Ge1 and Gn

e1 can occur. These errors are
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magnified for values of ab2 greater than 2 and can be qualitative as well as quantitative.
Moreover, the effect of the singularities due to the resonance o5E2o1 is not accounted for in the
value of Ge1: If one uses a three-mode discretization, the values of Ge1 and Gn

e1 seem to match well
up to approximately ab2 ¼ 5: Instead, a five-mode discretization seems to give sufficiently good
agreement up to ab2 ¼ 10 and possibly more. However, for such large values of ab2; the shallow
suspended cable theory used here may not hold.

5.3.2. First antisymmetric in-plane mode: OEo2

Next, we use Eq. (77) to calculate Ge2 for the first antisymmetric in-plane mode. In Fig. 7(a), we
demonstrate the dependence of Ge2 on the number of modes (including mode 2) retained for the
three cases: ab2 ¼ 1

2
; ab2 ¼ 2; and ab2 ¼ 4: And, in Figs. 7(b) and 7(c), we present the

corresponding percent errors. Because, from Eq. (77), the value of Gem when using a single-mode
discretization does not depend on b; in all three cases, Ge2 begins at the same value of 559 112:6:
For the case ab2 ¼ 1

2
; we find that Ge2 quickly converges to the solution of the direct approach

Gn
e2 ¼ 335 392:4 as we use more than one mode in the discretization. The relative errors when

using single-, two-, three-, and ten-mode discretizations are 66.7%, 3.8%, 1.8%, and 0.013%, as
shown in Fig. 7(b). For the case ab2 ¼ 2; the single- and two-mode discretizations give relatively
close results. However, when using three or more modes, Ge2 increases significantly, and after
retaining 16 modes it approaches Gn

e2 ¼ 1 015 797:4: In this case, the percent errors when using
single-, two-, three-, and ten-mode discretizations are 45.0%, 49.6%, 5.7%, and 0.017%,
respectively, as shown in Fig. 7(b). In both of these cases, the values of Ge2 > 0; and therefore the
effective non-linearity of the first antisymmetric in-plane mode is hardening.
When ab2 ¼ 4; we find from Fig. 7(a) that Ge2 > 0 when using single-, two-, and three-mode

discretizations. However, using four- or higher-mode discretizations, we find that Ge2o0; and
when we retain 16 modes, Ge2 ¼ �283 281:91: The corresponding value of Gn

e2 ¼ �283 357:1:
Therefore, in this case, the error due to single-mode discretization is qualitative as well as
quantitative. That is, for this case, the single-mode discretization predicts the effective non-
linearity of the first antisymmetric in-plane mode to be hardening, when in fact it is softening.
To further illustrate this point, we show in Fig. 8 typical frequency–response curves when

ab2 ¼ 4; F12 ¼ 0:001; and m12 ¼ 0:02: The curves for the single- and two-mode discretizations
indicate a relatively very hardening behavior. However, this hardening behavior significantly
diminishes when using a three-mode discretization. And, if a fourth mode is included in the
discretization, the frequency–response curves bend to the left, indicating a softening behavior.
This softening behavior is also demonstrated by the curves obtained with the direct approach.
Furthermore, we show in Fig. 9 typical force–response curves when ab2 ¼ 4; s ¼ 0:1; and m12 ¼
0:02: The curves obtained using single- and two-mode discretizations are quite close to each other.
Retaining a third mode, we find that a considerable shift in the saddle-node bifurcations occurs.
However, with the inclusion of a fourth mode, the saddle-node bifurcations vanish and the
amplitude a2 becomes monotonously increasing with F12; that is, a characteristic change in the
force–response curves, which closely match those obtained with the direct approach, occurs. The
percent errors when using single-, two-, three-, four-, and ten-mode discretizations are 297.3%,
293.3%, 138.9%, 10.4%, and 0.13%, respectively, as shown in Fig. 7(c).
The influence of ab2 on Ge2 is presented in Fig. 10. These same results also apply to the effective

non-linearity coefficient Le2 when the second out-of-plane mode is excited near primary
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resonance, as will be discussed in the subsequent section. Results when using the direct and
discretization approaches (single-, two-, three-, and five-mode) are presented in Fig. 10. For
ab2A½0; 10�; the results for Gn

e2 contain a singularity at the second crossover which corresponds to
the autoparametric resonance o3E2o2: Similar singularities also occur at the fourth, sixth, etc.,
crossover points. Using a single-mode discretization, we find that the value of Ge2 remains
constant for any value of ab2: Using a two-mode discretization, we find that Ge2 is sensitive to ab2

for very shallow suspended cables (e.g., ab2o1). However, as ab2 becomes larger, the results of the
two-mode discretization very quickly approach the constant value obtained from the single-mode
discretization. Neither of these two discretization approaches take into account the second
crossover. The three-mode discretization yields good agreement with the direct approach for up to
ab2E2: However, as with the two-mode discretization, its results also approach the results of the
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single-mode discretization for ab2 > 3: Therefore, for results that closely match Gn
e2 over

ab2A½0; 10�; a five-mode or higher discretization is necessary, as shown in Fig. 10.

6. Primary resonance of an out-of-plane mode

We consider here the cable’s response when the mth out-of-plane mode is excited harmonically
near primary resonance and assume that it is not involved in an autoparametric resonance with
any of the other modes.

6.1. Direct approach

In this case, we set f1ðT0Þ ¼ 0 and

f2ðT0Þ ¼ F2 cosðOT0Þ; ð80Þ

where O is related to lm by

O ¼ lm þ es: ð81Þ

Because the system is damped, the free response of the cable after a long time is given by

u11ðx;T0;T1;T2Þ ¼ 0; ð82Þ

u21ðx;T0;T1;T2Þ ¼ cmðxÞ½BmðT1;T2ÞeilmT0 þ %BmðT1;T2Þe�ilmT0 �: ð83Þ
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Substituting Eqs. (82) and (83) into Eqs. (28) and (29), we find that Bm ¼ BmðT2Þ only, u22 ¼ 0;
and

D2
0u12 � u0012 � ab2y00

Z 1

0

y0u012 dx ¼ 4abQmm½ðB2
me

2ilmT0 þ ccÞ þ 2Bm %Bm�: ð84Þ

The solution of Eqs. (84) and (32) is

u12ðx;T0;T2Þ ¼ H1ðxÞðB2
me

2ilmT0 þ ccÞ þ H2ðxÞBm %Bm; ð85Þ

where the functions H1ðxÞ and H2ðxÞ are governed by the following boundary-value problems:

H 00
1 þ 4l2mH1 þ ab2y00

Z 1

0

y0H 0
1 dx ¼ �4abQmm; H1ð0Þ ¼ H1ð1Þ ¼ 0; ð86Þ

H 00
2 þ ab2y00

Z 1

0

y0H 0
2 dx ¼ �8abQmm; H2ð0Þ ¼ H2ð1Þ ¼ 0: ð87Þ

In Appendix B, we present the solutions of Eqs. (86) and (87).
Next, we substitute Eqs. (83) and (85) into Eq. (31), use Eq. (81), and obtain

D2
0u23 � u0023 ¼ �2ilmcm

dBm

dT2
þ c2Bm

� ��

þ ab c00
m

Z 1

0

y0H 0
1 dx þ c00

m

Z 1

0

y0H 0
2 dx

� �
B2

m
%Bm

þ a
3

2
c00

m

Z 1

0

c02
m dx

� �
B2

m
%Bm þ

1

2
F2e

isT2

�
eilmT0 þ cc þ NST


Hðx;T2ÞeilmT0 þ cc þ NST : ð88Þ

Then, letting

u23ðx;T0;T2Þ ¼ H3ðx;T2ÞeilmT0 þ cc þ NST ð89Þ

in Eqs. (88) and (32), we obtain

@2H3

@x2
þ l2mH3 ¼ �Hðx;T2Þ; H3ð0Þ ¼ H3ð1Þ ¼ 0: ð90Þ

The homogeneous problem in Eq. (90) has non-trivial solutions, and therefore the non-
homogeneous problem has solutions provided that a solvability condition is satisfied. To this end,
we multiply Eq. (90) by the adjoint function h3ðxÞ; integrate the outcome by parts from x ¼ 0 to 1,
and obtain

h3
@H3

@x

� �1
0

þ
Z 1

0

H3ðh003 þ l2mh3Þ dx ¼ �
Z 1

0

h3H dx: ð91Þ

Following the same procedure used in Section 5.1, we find that the adjoint h3ðxÞ ¼ cmðxÞ and
consequently, the solvability condition is given byZ 1

0

cmðxÞHðx;T2Þ dx ¼ 0: ð92Þ
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Then, from Eqs. (18), (88), and (92), we obtain the following equation for BmðT2Þ:

2ilm

dBm

dT2
þ m2mBm

� �
þ Ln

emB2
m
%Bm ¼

1

2
F2me

isT2 ; ð93Þ

where F2m ¼
R 1
0 F2cm dx and the coefficient Ln

em of the effective non-linearity for the mth out-of-
plane mode is given by

Ln

em ¼
3

2
aQ2

mm þ abQmm

Z 1

0

y0ðH 0
1 þ H 0

2Þ dx

¼
3

2
am4p4 �

8a2b2m4p4ð48ab2 þ 3� 2m2p2Þ
ð16ab2 þ 3Þð16ab2 � m2p2Þ

; m ¼ 1; 2; 3;y : ð94Þ

We note from Eq. (94) that the solution becomes nonuniform when l2m ¼ m2p2E16ab2; that is,
near the mth crossover. In addition, the overall response of the cable is given by

u1ðx; tÞ ¼ 1
2
e2 #a2m½H1ðxÞ cosð2lmt þ 2 #bmÞ þ 1

2
H2ðxÞ� þ Oðe3Þ; ð95Þ

u2ðx; tÞ ¼ ecmðxÞ #am cosðlmt þ #bmÞ þ Oðe3Þ: ð96Þ

Therefore, even though only the mth out-of-plane mode is directly excited and there is no
autoparametric resonance between it and any other mode, the motion of the cable has a non-
trivial component in the in-plane direction. This is a direct consequence of the sag in the cable.

6.2. Discretization approach

Here, we set

Zk1 ¼ 0 8k; ð97Þ

zm1 ¼ BmðT1;T2ÞeilmT0 þ cc; ð98Þ

zl1 ¼ 0 8lam; ð99Þ

f1kðT0Þ ¼ 0 8k; ð100Þ

f2lðT0Þ ¼ F2l cosðOT0Þ 8l; ð101Þ

where O is related to lm by Eq. (81). We substitute Eqs. (97)–(99) into Eqs. (40) and (41), set
@Bm=@T1 ¼ 0; solve for the Zk2 and zl2; and obtain

Zk2 ¼ E3kðB2
me

2ilmT0 þ ccÞ þ E4kBm %Bm 8k; ð102Þ

zl2 ¼ 0 8l; ð103Þ

where

E3k ¼
1

2
ab

UkQmm

o2
k � 4l2m

 !
and E4k ¼ ab

UkQmm

o2
k

� �
: ð104Þ

It follows from Eqs. (102) and (104) that this expansion is non-uniform if okE2lm; corresponding
to the mth crossover. This case of two-to-one autoparametric resonance between an in-plane
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mode and an out-of-plane mode was investigated by Visweswara Rao and Iyengar [17], Lee and
Perkins [18], and Perkins [19] for different excitation conditions. In all three cases, the method of
multiple scales was applied to a set of non-linear ordinary-differential equations which were
obtained from a two-mode Galerkin discretization procedure.
Noting that near crossover points, the one-to-one autoparametric resonances o2k�1Eo2k ¼ l2k

also exist, Benedettini and Rega [20], Benedettini et al. [21], Lee and Perkins [22], Rega et al. [23],
and Nayfeh et al. [13] investigated the influence of the simultaneous autoparametric resonances
o1E2l1 ¼ o2 ¼ l2 on the responses of suspended cables for different excitation conditions. In the
first three works [20–22], the authors applied the method of multiple scales to a set of non-linear
ordinary-differential equations which were obtained from a four-mode Galerkin discretization
procedure. In the last two works [23,13], the authors applied the method of multiple scales directly
to the governing partial-differential system.
Next, we substitute Eqs. (97), (99), (101), and (103) into Eq. (43), set l ¼ m; and obtain the

following equation for zm3:

D2
0zm3 þ l2mzm3 ¼ � 2D0D2zm1 � 2m2mD0zm1 �

1

2
aQ2

mmz
3
m1

þ ab
XN
r¼1

½ðQmmUrÞzm1Zr2� þ F2m cosðOT0Þ: ð105Þ

Then, substituting for zm1 and Zk2 from Eqs. (98) and (102) into Eq. (105), using Eq. (81), and
setting the terms that produce secular terms equal to zero, we obtain the following equation for
BmðT2Þ:

2ilm
dBm

dT2
þ m2mBm

� �
þ LemB2

m
%Bm ¼

1

2
F2me

isT2 ; ð106Þ

where m ¼ 1; 2; 3;y . The coefficient Lem of the effective non-linearity of the mth out-of-plane
mode is given by

Lem ¼
3

2
aQ2

mm �
1

2
a2b2

XN
r¼1

ðQmmUrÞ
2 3o2

r � 8l2m
o2

r ðo2
r � 4l2mÞ

" #( )
: ð107Þ

Substituting for the Ur; Qmm; and lm; we reduce Eq. (107) to the following:

Lem ¼
3

2
am4p4 �

m4p4

128b2

XN
r¼odd

k2ro
2
r ð3o

2
r � 8m2p2Þ

ðo2
r � 4m2p2Þ

� �
8m: ð108Þ

The corresponding solution for the response of the cable is

u1ðx; tÞ ¼
1

2
e2 #a2

m

XN
r¼odd

frðxÞ E3r cosð2lrt þ 2 #brÞ þ
1

2
E4r

� �� �
þ Oðe3Þ; ð109Þ

u2ðx; tÞ ¼ ecmðxÞ #am cosðlmt þ #bmÞ þ Oðe3Þ: ð110Þ

Comparing Eqs. (109) and (110) with Eqs. (95) and (96), we find that the solutions from the
discretization and direct approaches match if

P
N

r¼odd E3rfrðxÞ ¼ H1ðxÞ and
P

N

r¼odd E4rfrðxÞ ¼
H2ðxÞ:
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6.3. Results and comparison

We note that if Lem;Ln

em > 0; then the effective non-linearity of the mth out-of-plane mode is of
the ‘‘hardening’’ type and if Lem;Ln

emo0; then the effective non-linearity of the mth out-of-plane
mode is of the ‘‘softening’’ type. In addition, Eqs. (94) and (108) are the same as the expressions
we have obtained for Gn

em and Gem when the mth antisymmetric in-plane mode is excited near
primary resonance. Therefore, the results of Figs. 7 and 10, which we have discussed in Section 5
for Ge2; also apply to Le2 (i.e., primary resonance of the second out-of-plane mode).
Consequently, we consider here the primary resonance of the first out-of-plane mode and

present in Fig. 11 results for the three cases: ab2 ¼ 1
2 (left of first crossover), ab2 ¼ 2 (right of first

crossover), and ab2 ¼ 4 (right of second crossover), where we take a ¼ 239:16: In all three cases,
the value of Le1 ¼ 34 944:5 when using a single-mode discretization.
When ab2 ¼ 1

2
; the value of Le1 jumps up to 70 841:0 when we use a two-mode discretization.

Retaining more modes in the discretization, the value of Le1 quickly approaches the value
obtained from the direct approach Ln

e1 ¼ 67 844:1: Replacing G by L in Eq. (79), we calculate the
relative errors when using single-, two-, three-, and ten-mode discretizations as 48:5%; 4:4%; 0:4%;
and 0:004%; respectively, as shown in Fig. 12(a).
Taking ab2 ¼ 2; we find that when we use a two-mode discretization, Le1 drops to 24 300:7:

Using a three-mode discretization, Le1 drops even further to �605:3: Continuing to add more
modes in the discretization, we find that Le1 approaches Ln

e1 ¼ �3198:0: The percent errors for
single-, two-, three-, and ten-mode discretizations are 1192.7%, 859.9%, 81.1%, and 0.34% (Fig.
12(b)), which indicate very significant quantitative discrepancies when using three modes or less in
the discretization. More importantly, the errors in this case are also qualitative, indicating a
hardening effective non-linearity when in fact it is softening.
Overall, the results for ab2 ¼ 4 are similar to the previous case. Using four modes or less in the

discretization, the effective non-linearity is predicted to be hardening, whereas, in fact, it is
softening, as indicated by the direct approach result Ln

e1 ¼ �1080:7: The percent errors when
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using single-, two-, three-, four-, five-, and ten-mode discretizations are 3333.5%, 3078.5%,
1745.1%, 153.76%, 38.0%, and 2.1%, respectively (Fig. 12(b)). These values emphasize the need
to include a sufficiently large number of modes in the discretization in order to obtain accurate
results.
In Fig. 13, we show the influence of ab2 on Le1 when using the direct and discretization

approaches. Results for single-, two-, three-, and five-mode discretizations are included. The
results for Ln

e1 contain a singularity for ab2 ¼ p2=16; this corresponds to the two-to-one
autoparametric resonance o1E2l1 which occurs at the first crossover.
The single-mode discretization results in Fig. 13 are constant over ab2; and hence do not account for

this singularity. Using two-mode or three-mode discretizations, we find relatively good agreement with
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the results of the direct approach when ab2o0:5: However, for larger values of ab2; the results from
these two discretizations deviate from Ln

e1 and tend to the result of the single-mode discretization. The
five-mode discretization yields good agreement with Ln

e1 but also loses some accuracy for ab2 > 6;
indicating more modes should be retained in the discretization for large values of ab2:

7. Summary

We investigated the non-linear responses of shallow suspended cables to primary resonance
excitations and considered both in-plane and out-of-plane motions. We assumed that the directly
excited mode is not involved in an autoparametric resonance with any of the other modes and used
the method of multiple scales to obtain second-order approximations of the solutions. To this end,
we followed two approaches. In the first, we applied the method of multiple scales directly to the
partial-differential equations of motion and associated boundary conditions (direct approach). In
the second, we applied the method of multiple scales to a set of non-linear ordinary-differential
equations, which were obtained by the Galerkin discretization procedure (discretization approach).
We investigated the influence of the number of terms retained in the discretization procedure on

the accuracy of the predicted effective non-linearity, and hence the cable response. We found out
that in all cases, only the symmetric in-plane modes contribute to the effective non-linearity. We
also compared the solutions obtained from the direct and discretization approaches and presented
results for the following cases: (a) OEo1 (b) OEo2 (c) OEl1 and (d) OEl2: We found out that
using a single-mode discretization can lead to significant quantitative errors in estimating the
value of the effective non-linearity. In some cases, two- and three-mode discretizations can lead to
as much errors as a single-mode discretization. Moreover, we found out that a single-mode
discretization may result in qualitative errors by predicting that the effective non-linearity is
hardening, when in fact it is softening. In all cases, however, the solutions converge onto the direct
approach solutions once enough modes are retained in the discretization procedure.

Appendix A. Calculating the functions G1ðxÞ and G2ðxÞ

The functions G1ðxÞ and G2ðxÞ are governed by Eqs. (53) and (54). Depending on the type of the
in-plane mode being excited (symmetric or antisymmetric), different solutions are obtained.

A.1. Primary resonance of a symmetric in-plane mode

For primary resonance of the mth symmetric in-plane mode, Eq. (53) becomes

G00
1 þ 4o2

mG1 ¼ abðc1 � 4PmmÞ þ abkmo2
mUm cosðomxÞ

þ abkmo2
mUm tan

om

2

� �
sinðomxÞ; ðA:1Þ

where c1 is a constant defined as

c1 ¼ �by00
Z 1

0

y0G0
1 dx ¼ 32b

Z 1

0

ð1� 2xÞG0
1 dx: ðA:2Þ
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The general solution of Eq. (A.1) is

G1ðxÞ ¼ a1 sinð2omxÞ þ a2 cosð2omxÞ þ d1 þ d2 sinðomxÞ þ d3 cosðomxÞ; ðA:3Þ

where

d1 ¼
abðc1 � 4PmmÞ

4o2
m

; d2 ¼ Rm tan
om

2

� �
; d3 ¼ Rm ðA:4Þ

and

Rm 
 1
3
abkmUm: ðA:5Þ

Next we apply the boundary conditions G1ð0Þ ¼ G1ð1Þ ¼ 0 and obtain

a1 ¼
ðd1 þ d3Þ cosð2omÞ � d1 � d2 sinom � d3 cosom

sinð2omÞ
; a2 ¼ �ðd1 þ d3Þ: ðA:6Þ

Then, we substitute Eq. (A.3) into Eq. (A.2), solve for c1; and substitute the result back into the
first of Eqs. (A.4) to get the following final expression for d1:

d1 ¼
ab½omPmm cosom þ 32bRm tanðom

2
Þ sin2ðom

2
Þ�

cosom½16ab2ðom � tanomÞ � o3
m�

: ðA:7Þ

Similarly, Eq. (54) for G2ðxÞ reduces to

G00
2 ¼ abðc2 � 8PmmÞ þ 2abkmo2

mUm cosðomxÞ

þ 2abkmo2
mUm tan

om

2

� �
sinðomxÞ; ðA:8Þ

where

c2 ¼ �by00
Z 1

0

y0G0
2 dx ¼ 32b

Z 1

0

ð1� 2xÞG0
2 dx: ðA:9Þ

The solution of Eq. (A.8) is given by

G2ðxÞ ¼ a3 þ a4x þ d4x
2 þ d5 sinðomxÞ þ d6 cosðomxÞ; ðA:10Þ

where

d4 ¼
1

2
abðc2 � 8PmmÞ; d5 ¼ �6Rm tan

om

2

� �
; d6 ¼ �6Rm: ðA:11Þ

Applying the boundary conditions G2ð0Þ ¼ G2ð1Þ ¼ 0; we obtain

a3 ¼ �d6 and a4 ¼ ðd6 � d4Þ � d5 sinom � d6 cosom: ðA:12Þ

Substituting Eq. (A.10) into Eq. (A.9), solving for c2; and then substituting the result into the first
of Eqs. (A.11), we obtain the following final expression for d4:

d4 ¼ �
3ð4abPmm � 3o2

mRmÞ
ð16ab2 þ 3Þ

: ðA:13Þ
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A.2. Primary resonance of an antisymmetric in-plane mode

For primary resonance of the mth antisymmetric in-plane mode, we set Um ¼ 0 in Eq. (53) and
obtain

G00
1 þ 4o2

mG1 þ ab2y00
Z 1

0

y0G0
1 dx ¼ �4abPmm: ðA:14Þ

Eq. (A.14) can be rewritten as

G00
1 þ 4o2

mG1 ¼ abðc1 � 4PmmÞ; ðA:15Þ

where c1 is defined by Eq. (A.2). The solution of Eq. (A.15) is given by

G1ðxÞ ¼ a5 sinð2omxÞ þ a6 cosð2omxÞ þ d7; ðA:16Þ

where

d7 ¼
abðc1 � 4PmmÞ

4o2
m

: ðA:17Þ

Using the boundary condition G1ð0Þ ¼ 0; we obtain a6 ¼ �d7: In this case, however, the second
boundary condition G1ð1Þ ¼ 0 yields the same condition on a6; and hence a5 remains unknown.
To determine a5 and render the solution unique, we require that the solution G1ðxÞ be orthogonal
to the adjoint function g1ðxÞ: To this end, we multiply Eq. (A.14) by g1ðxÞ; integrate by parts from
x ¼ 0 to 1, and obtain

g1G
0
1 � ab2g1y

0
Z 1

0

y00G1 dx

� �� �1
0

þ
Z 1

0

G1 g00
1 þ 4o2

mg1 þ ab2y00
Z 1

0

g0
1y

0 dx

� �
dx

¼ � 4abPmm

Z 1

0

g1 dx: ðA:18Þ

Then, we solve the homogeneous problem in Eq. (A.18) and obtain g1ðxÞ ¼
ffiffiffi
2

p
sinð2omxÞ:

Consequently, the constraint
R 1
0 g1G1 dx ¼ 0 yields a5 ¼ 0: Next, we substitute Eq. (A.16) into

Eq. (A.2), solve for c1; determine d7 from Eq. (A.17), and obtain the final expression for G1ðxÞ as

G1ðxÞ ¼
abPmm

16ab2 � o2
m

½1� cosð2omxÞ�: ðA:19Þ

To determine G2ðxÞ; we set Um ¼ 0 in Eq. (54) and obtain

G00
2 ¼ abðc2 � 8PmmÞ; ðA:20Þ

where c2 is defined by Eq. (A.9). The solution of Eq. (A.20) is equal to

G2ðxÞ ¼ a7 þ a8x þ 1
2
abðc2 � 8PmmÞx2: ðA:21Þ

Using the boundary conditions G2ð0Þ ¼ G2ð1Þ ¼ 0 to determine a7 and a8 and then substituting
the results into Eq. (A.9) to determine c2; we obtain the following final expression for G2ðxÞ:

G2ðxÞ ¼ �
12abPmm

16ab2 þ 3
ðx2 � xÞ: ðA:22Þ
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Appendix B. Calculating the functions H1ðxÞ and H2ðxÞ

The function H1ðxÞ is governed by Eq. (86), which we rewrite as

H 00
1 þ 4l2mH1 ¼ ðc3 � 4abQmmÞ; ðB:1Þ

where

c3 ¼ �ab2y00
Z 1

0

y0H 0
1 dx: ðB:2Þ

Using the boundary conditions H1ð0Þ ¼ H1ð1Þ ¼ 0; the solution of Eq. (B.1) is

H1ðxÞ ¼ a9 sinð2lmxÞ þ
ðc3 � 4abQmmÞ

4l2m
½1� cosð2lmxÞ�: ðB:3Þ

Then, substituting Eq. (B.3) into Eq. (B.2) and solving for c3; the expression for H1ðxÞ becomes

H1ðxÞ ¼ a9 sinð2lmxÞ þ
abQmm

ð16ab2 � l2mÞ
½1� cosð2lmxÞ�: ðB:4Þ

To calculate a9 and determine a unique solution, we require that the solution H1ðxÞ be orthogonal
to the adjoint function h1ðxÞ: To determine the adjoint, we multiply Eq. (86) by h1ðxÞ; integrate by
parts from x ¼ 0 to 1, and obtain

h1H
0
1 � ab2h1y

0
Z 1

0

y00H1 dx

� �� �1
0

þ
Z 1

0

H1 h001 þ 4l2mh1 þ ab2y00
Z 1

0

h0
1y

0 dx

� �
dx

¼ � 4abQmm

Z 1

0

h1 dx: ðB:5Þ

Then, we solving the homogeneous problem in Eq. (B.5) and obtain h1ðxÞ ¼
ffiffiffi
2

p
sinð2lmxÞ:

Consequently, the constraint
R 1
0 h1H1 dx ¼ 0 yields a9 ¼ 0; and therefore the final expression for

H1ðxÞ is

H1ðxÞ ¼
abQmm

ð16ab2 � l2mÞ
½1� cosð2lmxÞ�: ðB:6Þ

The function H2ðxÞ is governed by Eq. (87), which we rewrite as

H 00
2 ¼ ðc4 � 8abQmmÞ; ðB:7Þ

where

c4 ¼ �ab2y00
Z 1

0

y0H 0
2 dx: ðB:8Þ

Integrating Eq. (B.7) twice, using the boundary conditions H2ð0Þ ¼ H2ð1Þ ¼ 0; and then
substituting the result into Eq. (B.8) to determine c4; we obtain the final expression for H2ðxÞ as

H2ðxÞ ¼
12abQmm

ð16ab2 þ 3Þ
ðx � x2Þ: ðB:9Þ
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