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Abstract

We investigate the non-linear forced responses of shallow suspended cables. We consider the following
cases: (1) primary resonance of a single in-plane mode and (2) primary resonance of a single out-of-plane
mode. In both cases, we assume that the excited mode is not involved in an autoparametric resonance with
any other mode. We analyze the system by following two approaches. In the first, we discretize the
equations of motion using the Galerkin procedure and then apply the method of multiple scales to the
resulting system of non-linear ordinary-differential equations to obtain approximate solutions (discretiza-
tion approach). In the second, we apply the method of multiple scales directly to the non-linear integral-
partial-differential equations of motion and associated boundary conditions to determine approximate
solutions (direct approach). We then compare results obtained with both approaches and discuss the
influence of the number of modes retained in the discretization procedure on the predicted solutions.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Suspended cables are key components in many mechanical systems and civil structures, and
therefore understanding their behaviors under different load conditions is of great importance to
engineers. In general, analytical solutions of non-linear systems are very scarce and often
computational methods are required to determine the responses of such systems. When the non-
linearity is “weak”, asymptotic methods can be used to determine approximate analytical
solutions of the system responses. These solutions, although not exact, are important because they
can give general information about the system behavior for different parameter values.
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There are two popular approaches to calculating approximate analytical solutions of weakly
non-linear distributed-parameter systems. In the first, the equations of motion are discretized by
using a weighted-residual technique, and then the resulting non-linear ordinary-differential set of
equations is solved using an asymptotic technique. In the second, solutions are calculated by
applying an asymptotic technique directly to the governing partial-differential system and
associated boundary conditions.

A common practice among many researchers who use the first approach is to perform the
discretization by using a single mode or, when autoparametric resonances are present, a few
modes. By means of several examples, Nayfeh and coworkers [1-8] have demonstrated that this
reduced-order discretization approach can yield incorrect results. Pakdemirli and Boyaci [9]
further investigated this problem for a general distributed-parameter system with quadratic and
cubic non-linearities.

The forced planar dynamics of suspended cables near primary resonance were investigated by
Benedettini and Rega [10]. They used a single-mode Galerkin discretization and then applied the
method of multiple scales to calculate a fourth order asymptotic expansion of the solution. They
found out that the response may be either hardening or softening, depending on the amplitude of
oscillation. Rega et al. [7] investigated the primary resonance of the first in-plane mode of a
suspended cable. They considered both the discretization and direct approaches and found that,
when only a few number of modes is used in the reduced-order model, the results of the two
approaches tend to deviate from each other. The out-of-plane oscillations of suspended cables to
in-plane excitations were considered by Takahashi and Konishi [11]. They used a full-basis
Galerkin discretization and then applied the method of harmonic balance to investigate regions of
instability for several principal parametric and combination parametric resonances.

In this work, we use the method of multiple scales to investigate the responses of suspended
cables to primary resonance excitations. We present analyses for both the direct and discretization
approaches. We consider cases where the directly excited mode (be it in-plane or out-of-plane) is
not involved in an autoparametric resonance with other modes. We then compare results of both
approaches and explore the consequences of using only a few number of modes in the Galerkin
discretization.

2. Problem formulation

Taking the cable span / as the characteristic length and * = //2n\/m/H as the characteristic
time, we express the non-dimensional non-planar equations of motion for a shallow suspended
elastic cable (see Fig. 1) as [12,13]

1
1
i+ 2c1i — uf = a(u + by”)/0 [by’u’1 +3 W} + uf } dx + £1(2), (1)
! 1
iy + 2¢20n — ty = ocu'z’/o [by’u’1 + E(u’l2 + uf ] dx + £2(2), )
where y(x) = —4x(1 — x) and the boundary conditions are

uy=up,=0 atx=0 and x=1. (3)
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Fig. 1. A schematic of a suspended cable under external excitations.

The overdot and prime indicate the derivatives with respect to the non-dimensional time ¢ and
position x, respectively, u;(x, #) and u>(x, t) denote the non-dimensional in-plane and out-of-plane
displacements, m is the mass per unit length, b the non-dimensional cable sag, E is Young’s
modulus, 4 the cross-sectional area, the ¢; are the non-dimensional viscous damping coefficients,
the fi(z) are the non-dimensional external excitations, g is acceleration due to gravity, H the
horizontal component of the cable tension, and

EA 8bEA
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Dropping the forcing, damping, and non-linear terms in Egs. (1) and (2), we obtain the
linearized equations of motion:

4)

1
i —uf = ocby”/0 by'u, dx, (5)

i) — l/llzl =0. (6)

Solving Egs. (3), (5), and (6), we determine the mode shapes and natural frequencies of the cable
[14]. For the out-of-plane motion, the nth mode shape and corresponding natural frequency are
given by

¥, (x) = V2sin(l,x) and A, =nm, n=123, ..., (7)

where the mode shape is normalized so that fol lpﬁ dx = 1. For the in-plane motion, the nth
antisymmetric (n = even) mode shape and corresponding natural frequency are given by

¢,(x) = V2sin(w,x) and o, = nx, (8)
and the nth symmetric (n = odd) mode shape is given by

. (x) = K [1 — cos(w,x) — tan (%) sin(a)nx)]. )
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Fig. 2. Variation of the first few non-dimensional natural frequencies and mode shapes with ab?.

The corresponding natural frequency w, is determined from

an(3) = (3) -t (3)

and «, is chosen such that fol $(x) dx = 1, yielding

o \/ 200, 05X (0 /2)

(2 + cos w,)w, — 3sinw,

(10)

(11)

From Eq. (10), we note that the natural frequencies of the symmetric in-plane modes vary with
ab?. This results in the crossover points cxbi = (mt)2 /16, n=1,2,3, ..., where the one-to-one and
two-to-one autoparametric resonances wy, | 24, = Wi, = Ay, occur simultaneously. In Fig. 2,
we present the first few natural frequencies as functions of «b? and indicate the first three

crossover points.

3. Galerkin discretization procedure

To analyze the non-linear responses of this system, we first discretize Eqgs. (1) and (2) using the
mode shapes of the linearized problem. To this end, we express the in-plane and out-of-plane

displacements u; and u, as

w(x,0) =Y ¢, (),
n=1

(12)
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(1) = > Y, ()G(0), (13)
n=1

where the #,(¢) and {,(7) are generalized co-ordinates. Next, we substitute Egs. (12) and (13) into
Egs. (1) and (2), multiply, respectively, by the mode shape functions ¢, (x) and y,(x), integrate the
outcomes over xe[0,1], and obtain the following system of non-linear ordinary-differential
equations for the #,(¢) and {,(¢):

. . b I~
Mk + 2,“1](’7/( + (012(7’]/( = z z [( UkPnr + 2Pkn (Jl‘)nnnr]

? n=1 r=1
h I & o o W
Y UL -5 S S S (PP
n=1 r=1 n=1 r=1 j=1
SIS S PR LG ), (14)
n=1 r=1 j=I

Ert 2l + 30 =ab S S QU] - DD DD (DR
n=lr=l n=1 r=1 j=1
%Z Z Z[(anQi’])CnCle +f2[(t) (15)
n=1 r=1 j=I

where k,/ = 1,2,3, ..., iy = fy 17 dx, iy = [y ea} dx, and
2

1 1 KnWy, —
U, = / ¢, dx = —/ §y dx = gopr 0T = odd, (16)
0 0 0 for n = even;
/ 0y d) dx = / d)”(;S dx
KK .
—W for r,j = odd, and r#j,
2 o
1 oy 5 f)l,n r) for r =j = odd,
— 2 cos* (%) (17)
0 for r,j = even and r#j,
w? for r = j = even,
0 for r = odd, j = even and vice versa;

| 1 )2 for Vr=j
= ! /d = - / [z d - ' ’ 18
0,/ /0 lprlp] X A W, W/ X {0 for Vr,j and r#j; (49
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1 ani _
Finld) = £i() / g, dx = { Gagp/1(0) for m=odd. (19)
0 0 for n = even;
| 2v/2 _
) = (1) / Y, dx = 5, /A0 forn=odd, (20)
0

0 for n = even.

Eqgs. (14) and (15) constitute two infinite sets of non-linearly coupled ordinary-differential
equations that describe the non-planar dynamical behavior of the cable. For all practical
purposes, one usually truncates Egs. (14) and (15) by considering the contributions from K in-
plane modes and L out-of-plane modes. This reduces the problem to solving a set of K + L non-
linear equations. The values of K and L are usually chosen by trial and error and are verified by
testing the convergence of the solutions.

When a specific mode is directly excited and if it is not involved in an autoparametric resonance
with any other mode, it is common practice to employ a single-mode discretization. That is, if the
mth in-plane mode is the only one being excited, then one lets uy(x,7) =0 and wu(x,?) =
¢,,(x)n,,(1) in Eq. (1) and obtains the following equation for #,,(?):

Tim + 28 imtim + Oty = 3 0D Uy Pty — 3 0P 03 + fim(2). (21)
Similarly, if the sth out-of-plane mode is the only one being excited, then one lets u;(x, ) = 0 and
ur(x, 1) = Y (x){4(?) in Eq. (2) and obtains the following equation for {(?):

Cs + 20, + 220, = —La QL0 + fos(0). (22)

The questions we wish to answer here are: how much do the neglected modes contribute to the
cable response? How do the solutions of the discretized system compare with the solutions
obtained by directly attacking the original integral-partial-differential system?

4. Method of multiple scales

In order to answer these questions, we next seek solutions of this weakly non-linear system by
using perturbation techniques [15]. In particular, we use the method of multiple scales to conduct
the analyses. Two approaches are discussed and compared: (1) solving the original integral-
partial-differential system directly and (2) solving the discretized system. In this section, we
present the basis for both approaches and in Sections 5 and 6, we solve the specific cases of
primary resonance of an in-plane mode and primary resonance of an out-of-plane mode,
respectively.

4.1. Solving the partial-differential system directly: “direct approach”

To apply the method of multiple scales, we introduce the non-dimensional parameter ¢< 1
for bookkeeping purposes and define the fast time scale 7 = ¢ and the slow time scales 7| = &f
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and T, = &*t. Consequently, the first and second derivatives with respect to time are

d d?
—=Dy+¢eD;+&Dy+ -,

uF o Djj + 2eDyDy + & (D7 + 2DgDy) + -+, (23)

where D, = 0/0T,. In addition, we scale the damping and forcing terms so that their influence

balances the influence of the non-linearities. Hence, we set Cj—>82Cj and ];-(Z)—>83fj(t) in Egs. (1)
and (2). Next, we express the displacements as

ui(x, t) = euy(x, To, Th, Ta) + *uin(x, To, T1, To) + urz(x, To, Ty, To) + -+, (24)

ur(x, t) = euy(x, Ty, Th, Ta) + 2un(x, To, Ty, To) + &uzs(x, To, Ty, To) + -+, (25)

in Egs. (1)—(3), use Egs. (23), separate terms of equal powers in &, and obtain:
Order &:

1
D%u” —uf, — ocb2y"/ Yl dx =0, (26)
0
Djuy — s, = 0. (27)
Order &:

I 1
Diuyy — ully — ocbzy”/o Y, dx = — 2DoDyuy; + abuy, /0 Y dx

1 : 1 :
+ —aby” / ufy dx + < aby” / u5) dx, (28)
2 0 2 0
1
Diuyy — tlyy = —2DoDyua; + abull, /0 Y, dx. (29)

Order &
1
D%u13 — u’1'3 — ocbzy"/ y’u’m dx = — D%un — 2D0D2u11 — 2D0D1u12 — 201D0u11
’ 1 1
+ abul, /0 V', dx + obul, /0 Y dx
1 1 1
+ zocu’{l/o uf dx + ocby”/o uy uy, dx

1 1 1
+ 5“”/1/1 /0 u5y dx + aby” /0 Uy 1ty dx

+ i(To), (30)
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2 2
D0u23 — u’2’3 = — Dluzl — 2D0D2u21 — 2D0D1u22 — 262D0u21
1 1
+ abuy, /0 V', dx + abuy, /0 Y dx
1 ! 1 !
+3 oy, / ufy dx + 3 oy, / uf dx
0 0

+ fo(T)). (31)
The equations are subject to the boundary conditions

up(0, To, T1, T2) = up(1, To, 11, T2) = 0,  j,k=1,2,3. (32)

The general solutions of Egs. (26), (27), and (32) can be expressed as

.
upi(x, To, Th, Tr) = Z (O A(Ty, Tr)e ™0 + A (T, Ty)e 0], (33)
=1
© .y _ oy
un(x, To, T1, To) = > Y ()BITy, To)e ™ + BT, To)e 7], (34)

I=1

where the ¢, (x) and ¥,(x) are the linear mode shapes, defined by Eqs. (7)—(9), the @y and /; are the
corresponding natural frequencies, the A; and B; are slowly time-varying complex-valued
functions, and the A, and B; are their complex conjugates. In terms of real-valued amplitude and
phase functions,

AT, T») = Lap(Ty, To)e ™) and  By(T), T>) = La(T, Ty)ePTT, (35)

1
2

4.2. Solving the discretized system: “‘discretization approach”

Using the previously defined time scales and bookkeeping parameter &, we express the
generalized co-ordinates #,(¢) and {;(¢) as

;&) = eng(To, Tr, To) + &ma(To, T, To) + ¥mys(To, Ti, To) + -+, (36)

Lt 8) = elp(To, Th, To) + €200(To, Th, Ta) + &2 (a(To, T, To) + -+ (37)

in Egs. (14) and (15). Then, we use Egs. (23), set ujkeszujk and fj(t) > &/ (2), separate terms of
equal powers of ¢, and obtain the following:
Order &:

D + @i =0, (38)
Dy + 27 = 0. (39)
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Order &:
Dty + iz = — 2DoDuny + 5 Lot Z Z [(Uk Q) Cnl
1 o0 0 - a
E Z Z [(UkPm + 2Pan )’7n1’7r1]
Dilp + 27lp = —2DoDily +ab > > (OuUndlnl
n=1 r=1
Order &:

Diies + o = — Dingy — 2DoDangy — 2DoD s — 2415 Dot
o0

Z [( UkPnr + 2Pkn ljr)(nnlan + ’7n2’7r1)]
1 r=1

NgE

1
=+ E(Xb

n

[( Uk in‘)(énl Z:./r2 + Z:./nZCrl )]

N —
2

NgE
NgE

—+

r=1

3
Il
—_

0
Z (PknPlj/‘)’/lnl’/lrlnjl]

-
M8 7

n=1 r=1 j=I1

1 0 0 0

- 5% Z Z 21: [(Pien Qe $r1 1] + f11(To),
n=1 r=1 j=

D+ 270 = — D1C11 —2DoDy(;; — 2DoD1(jp — 21y Dolpy

Z (O UGt + Cuatly1)]

r

+ ob

ng
Il

n

[(Q[Vl r])Cl’ll’/]I 1 ’7]1]

3
I
-
<
Il
-
~.
Il
_

-
[M]s
NgE

[(an er)énlgl 1 C]l] +f21(T0)

1

i
I
~.
Il

-
g
[M]s

The general solutions of Egs. (38) and (39) can be expressed as
e (To, Th, Ts) = Ai(Ty, To)e T + ¢ Vi,

{1(To, T, Ta) = Bi(Ty, To)e ™ + ce VL.

where cc stands for the complex conjugate of the preceding terms.
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(40)

(41)

(42)

(43)

(44)

(45)
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5. Primary resonance of an in-plane mode

We consider here the cable’s response when the mth in-plane mode is excited near primary
resonance. Because we are assuming that the mth mode is not involved in an autoparametric

resonance with any of the other modes and since damping is present in the system, the free
responses of the rest of the modes are assumed to die out after a long time [16].

5.1. Direct approach

In this case, we set

un(x, To, T1, ) = ([ An(T1, To)e ™ + A, (Ty, Tr)e 1], (46)
u(x, Ty, Th, T2) = 0, 47)
Ji(Ty) = Ficos(QTp), fo(Tp) =0 (48,49)

and introduce the detuning parameter ¢ such that
Q= w, +&%o. (50)

Substituting Eq. (47) into Egs. (29) and (31), we find that u;; = 0 and u3 = 0, and therefore the
out-of-plane displacement u,(x, ) = 0. Next, we substitute Eq. (46) into Eq. (28), use Egs. (16)
and (17), and obtain

1

1 ‘ -

D3y — s — by / Vil dx =ab <§y”Pmm — ¢ U) (A2 T 1 ) + 24,0 A
0

Ay

— 2wy, (a—Tleimeo —|—cc). (51)

To avoid the presence of secular terms in the solution, we need to set d4,,/07) = 0; that is,
A, = Am(T3) only. Consequently, the solution of Eq. (51) is given by

uia(x, To, To) = Gi(x)(4,,&” "™ + cc) + Go(xX) A A, (52)
where G1(x) and Gy(x) are governed by the following boundary-value problems:
1
1
G| + 40?2, Gy + ab?y" /0 VG dx = —ab (5 V' Poun — U,,,d);;),

G1(0) = Gi(1) = 0, (53)

1 1
Gg + ocbzy"/ J/Gé dx = —2uab <§yNPmm - Um(p:;) 4
0
G1(0) = Gy(1) = 0. 4

In Appendix A, we present the solutions of Egs. (53) and (54).
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Next, we substitute Egs. (46) and (52) into Eq. (30), use Eq. (50), and obtain
1
Djuys — uly — ocbzy”/o V', dx
. d4,, | R
= {—21wm¢n <dT —i—C]Am) +§F161¢7T2
1 1
wably [ .6 axs g, [ 6
1 1
+ G’{/O Vo dx+y”/0 ¢! G5 dx
1 1
+ ¢ | VG dx+ G / Y & dX} A A

+ %a(qﬁ / d)’z dx)A2 } onTo 4 cc 4+ NST

= 9(x, T»)e" T + cc + NST, (55)
where NST stands for the terms that do not produce secular terms. Then, letting
uis(x, To, Tr) = Gs(x, Tr)e™ + cc + NST (56)
in Eq. (55), we obtain
aafj + 0%, Gs + ab®y” /Oly’%dx — —9(x,T>), G5(0)= Gs(1) = 0. (57)

The homogeneous problem in Eq. (57) has non-trivial solutions. Therefore, the non-homogeneous
problem has solutions provided that a solvability condition is met. To determine this condition,
we multiply Eq. (57) by the adjoint function g;(x), integrate the outcome by parts from x =0to I,
and obtain

1

aG 1 1 1
[gg 6—3 — ocbzy’g3/ V' Gs dx] +/ Gs [gg’ + a),zngg + ocbzy”/ g5y dx] dx
X 0 0o JO 0
1
= —/ 3% dx. (58)
0

The adjoint is determined by considering the homogeneous problem in Eq. (58), which is the same
as the linear eigenvalue problem. Therefore, we find that g;(x) = ¢,,(x), and consequently Eq. (58)
reduces to the solvability condition

1
/ ¢,,(X)%(x, T,)dx = 0. (59)
0
Using Egs. (16), (17), and (55), we obtain the following equation for 4,,(7>):

. (d4,, 1
21wm( it ulmAm) + I A = 5 Fine™, (60)
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where Fy,, = F; fol ¢,, dx and the coefficient I'*, of the effective non-linearity for the mth in-plane
mode is given by

1
rk = %O‘P;an — ocb/O [(QUnd,, — Ppm)' )G + GS)] dx. (61)

When the mth in-plane mode is symmetric (m = odd), the final expression for I'*  becomes
[(480b? + 3 — 22 )y, cOS Wy — 3(160b* + 1) sin W]
cos wp(160b% + 3)[160b>* (W, — tan wy,) — 3]
2 _ 2 2
6dob? (16ab” — 33)wy,, B 640b- tan w,,
(16ab* + 3) W

r* :EaPz — 8u’b*P? {

em 2 mm mm

- ﬂ OCPmm Ume

N sin®(22)(64ab? — w2 )[160b*(wy, — tan wy,) + w3
cos wy[16ab?(w,, — tan w,,) — 3]

1 5 5 | 480abw,, 3, sin*(2)(64ab? — )
— —aw, Uk
288 T cosP (%) cos? w,[16ab (@, — tan w,) — )]
540 640b*w,, — @3 )4 — 19 cos w,,
S, ) )\ .
(16a:b” + 3) 2. coS wyy,

where k,,, U,, and P,,, are defined by Eqs. (11), (16), and (17). On the other hand, when the mth
mode is antisymmetric (m = even), U,, = 0 and the expression for I'¥  reduces to
e 3 it 8ob*m*n*(48ab? + 3 — 2m2n2). 63)
a2 (16ab? + 3)(160b? — m?n?)
Substituting the results obtained for the uj back into Egs. (24) and (25), using Eq. (35), and
setting T, = ¢"t, the response of the system to second order in ¢ is given by uy(x, #) = O(¢*) and

ul(xa t) = 8¢m(x)am COS(CUm[ + ﬂm)
+ 1242 [Gi(x) cosQut + 2B,,) + 3 Go(x)] + O(&?). (64)
We note that, by virtue of Eq. (10), as w,, - ®,/2, the term [16ab*(w,, — tan ,,) — »’]—0 and

m
Eq. (62) becomes singular. Moreover, Eq. (63) becomes singular when ab? —m?n? /16, which are
the even crossover points (see Fig. 2); these correspond to the autoparametric resonances
Woym—1 2w, m = 2,4, ... . Resonance conditions such as the ones occurring in Egs. (62) and (63)
are clearly demonstrated in the results obtained by applying the discretization approach, as is

presented next.

5.2. Discretization approach

In this case, we set
Nt = A(T1, T2)e 10 + ce, (65)

N =0 Vk#m, (66)
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(=0 Vi, (67)
Ji(Ty) = Fii cos(QTy)  Vk, (68)
fu(To) =0 VI, (69)

where Q is related to w,, by Eq. (50). We substitute Eqgs. (65)—(67) into Egs. (40) and (41),
determine that 04,,/0T; = 0, solve for the 1;, and (), and obtain

Ny = En(A2e5On 10t ce) + EpAnA, Yk, (70)

{pn=0 VI, (71)

where

1 Ui Py + 2Pin Uy Ui Pym + 2P Uy,
( k m+ k ;) and Ezk:ab< k m+ k n>‘

Elk =—ob
2 a)i — 4w, co]z(

(72)

We note from Egs. (70) and (72) that this solution breaks down when wj; ~2w,,, a two-to-one
autoparametric resonance between two in-plane modes.
To determine A4,,(T>), we set k = m in Eq. (42), use Egs. (66)—(68) and (71), and obtain

D%’/’m?a + w;2nnm3 = - 2D0D217m1 - 2:ulmD077ml

1 o8]
+ B ab ; [((UnPmr + 2P U N1 1,0]
0

+ —ab Z [( Un P + 2Py Um)”ml’?nZ]
n=1

ocPﬁWn;] + F1;, cos(QTy). (73)

N = o =

Then, substituting for the n,,, and n;, from Egs. (65) and (70), using Eq. (50), and setting
the terms that produce secular terms equal to zero, we obtain the following equation for
Am(T2):

. dAm i 1 ic
i, <d—T2 + ,ulmAm> + LA Ay = EFlme . (74)

where the coefficient I, of the effective non-linearity of the mth in-plane mode is given by

0

3 1 3w? — 8w
Loy =3 P2 - 2b2 v Prim 2Prm m B N . 75
340 =37 ) {(U 2 U)ot~ 402) 7
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If the mth mode is symmetric (i.e., m = odd), then after substituting for the Uy and P,;, we find
that Eq. (75) becomes

F = EO‘ i ISK’Z'an?n Kﬁ1w3n(wl’n - Sln a)m)2
"2 12852 4 cos*(“p)

zw: KfKﬁzw%w,i(:;w% - 8(*)/%1)
524288025 (0 — 42,) cos* ()

=odd
r#Fm

X [320h” sin w,, — 320b*w,, + (1 + cos wm)cofﬂ]z}. (76)

On the other hand, if the mth mode is antisymmetric (i.e., m = even), then Eq. (75) reduces to the
expression

3
I, == am’*n (77)

2 1287 £

s mint G [K2o?(Bw? — 8mPn?)
(w? — 4m>7?)

Looking at the expressions for the effective non-linearities in Egs. (76) and (77), we note that
they consist of two parts. The first part is the effective non-linearity one would obtain if a single-
mode discretization is used. The second part is the summation of the contributions of all of the
other modes to the effective non-linearity of the mth mode. In this case, we note that only the
symmetric modes contribute. Substituting the results obtained for the #;; and {; back into
Egs. (36) and (37), using Eqgs. (12), (13), and (35), and setting 7,, = &"t, we obtain the system’s
response to second-order in ¢ as ux(x, ) = O(¢*) and

ui(x, 1) = ed,,(x)a,, cos(wmnt + p,,)

+ %Szaiz ZOO: {(br(x) |:E1r COS(2C()mt + 2ﬂm) + %E2r:| } + 0(83)' (78)
r=odd

Comparing Egs. (64) and (78), we find that the solutions from both approaches are equivalent if
S oad Eird(x) = Gi(x) and 2, Ex¢,(x) = Ga(x), in agreement with the general results of
Pakdemirli and Boyaci [9].

5.3. Results and comparison

When I, I'%, > 0, the frequency—response curves are bent to the right and the effective non-
linearity is of the “hardening” type. On the other hand, when I',,,, ['¥, <0, the frequency—response
curves are bent to the left and the effective non-linearity is of the ‘“‘softening” type [16].

As an example, we consider a cable for which « = 239.16 and investigate the influence of the
number of modes retained in Egs. (76) and (77) on the value of the coefficient I',,, of the effective

non-linearity. These results are also compared to their corresponding values of I'*  evaluated

em?
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Fig. 3. The coefficient I',; (—e—) of the effective non-linearity of the first symmetric in-plane mode (m = 1) and

percent error (—B-) as a function of the number of modes considered when « = 239.16 and ab? = %
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Fig. 4. The coefficient I',; (—e—) of the effective non-linearity of the first symmetric in-plane mode (m = 1) and
percent error (—E8-) as a function of the number of modes considered when « = 239.16 and ab® = 2.

from Egs. (62) and (63), by calculating the percent errors:

r* — Lo
E,p = ‘("}7) % 100%. (79)

*
m

We consider the primary resonance of the first symmetric in-plane mode (i.e., m = 1) and the
primary resonance of the first antisymmetric in-plane mode (i.e., m = 2). Because the natural
frequencies of the symmetric in-plane modes vary as a function of ab?, we present results for three
cases: ab® =% (left of first crossover), ab”> = 2 (right of first crossover), and ab® =4 (right of
second crossover). The corresponding values of the sag-to-span ratio b = b// are approximately
21%, ﬁ, and %, respectively, which are acceptable for the “shallow” suspended cable theory [14].
5.3.1. First symmetric in-plane mode: Q= w;

In Fig. 3, we present variation of I',; and corresponding percent error when ab? = % (left of first
crossover) with the number of modes retained in Eq. (76). Using a single-mode discretization,
I'.y = —113640.7. If, instead, both modes 1 and 3 are used in the discretization, I',; increases to
—112866.2. As more modes are included in the discretization, I',; monotonously converges onto
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Fig. 6. The coefficient I',; of the effective non-linearity of the first symmetric in-plane mode (m = 1) as a function of ab>
when o = 239.16.

the correct value. When 15 modes are retained in the discretization, I'.,; = —116871.7. The value
obtained by the direct approach is I'%; = —116 878.2. The percent errors when using single-, two-,

three-, and ten-mode discretizations are E,; = 2.8%, 3.4%, 0.8%, and 0.019%, respectively.

Choosing ab? = 2 (right of first crossover), we present in Fig. 4 the variation of I',; and the
corresponding percent error with the number of modes retained. The value obtained by the direct
approach is I'Y; = —113 146.7. Switching from a single-mode to a two-mode discretization, we
find that I',; jumps from —86 661.5 to —137 601.1, which is beyond the true value. In this case, the
percent errors when using single-, two-, three-, and ten-mode discretizations are 23.4%, 21.6%,
3.3%, and 0.046%, respectively.
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Lastly, we choose ab”> = 4 (right of second crossover) and present in Fig. 5 the variation of I,
and the corresponding percent error with the number of modes retained. The value obtained by
the direct approach is I'; = 4 654 599.6. Using single- and two-mode discretizations, we find that
the corresponding values of I',; = 13455759 and 1356 450.4, which are relatively close to each
other, but quite off the correct value. However, as we include more modes, a sharp jump in the
value of I',; occurs, and after 15 modes, I',; converges to 4 654 795.8. The percent errors when
using single-, two-, three-, and ten-mode discretizations are 71.1%, 70.9%, 2.1%, and 0.02%.

From Figs. 3 and 4, we note that the final values of I',; <0, and therefore the effective non-
linearity for the first symmetric in-plane mode for these two cases is softening. From Fig. 5, we
note that the final value of I',; > 0, indicating that for this case, the effective non-linearity of the
first mode is hardening. Moreover, from Figs. 4 and 5, we find that using single- and two-mode
discretizations results in significant quantitative errors.

In Fig. 6, we show the influence of ab’> on I',; when using the direct and discretization
approaches; results for single-, two-, three-, and five-mode discretizations are presented. The
results of I'¥, from the direct approach contain several singularities corresponding to the
autoparametric resonances w, ~ 2wy, r = 3,5, ... . For ab”?€[0, 10], the resonance w3~ 2m; occurs
once, whereas the resonance ws~2w; occurs twice. If one uses single-mode or two-mode
discretizations, significant deviations between the values of I',; and I'%; can occur. These errors are
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Fig. 7. (a) The coefficient I',; of the effective non-linearity of the first antisymmetric in-plane mode and (b), (c) the
percent errors as functions of the number modes considered when o = 239.16 and ab> = % (—e—); ab> =2 (—#-), and
o> =4 (---A--).
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magnified for values of ab®> greater than 2 and can be qualitative as well as quantitative.
Moreover, the effect of the singularities due to the resonance ws= 2w is not accounted for in the
value of I',;. If one uses a three-mode discretization, the values of I',; and '} seem to match well
up to approximately ab?> = 5. Instead, a five-mode discretization seems to give sufficiently good
agreement up to ab> = 10 and possibly more. However, for such large values of ab?, the shallow
suspended cable theory used here may not hold.

5.3.2. First antisymmetric in-plane mode: Q~ w,

Next, we use Eq. (77) to calculate I',; for the first antisymmetric in-plane mode. In Fig. 7(a), we
demonstrate the dependence of I',; on the number of modes (including mode 2) retained for the
three cases: ab? =1, ab® =2, and ob> =4. And, in Figs. 7(b) and 7(c), we present the
corresponding percent errors. Because, from Eq. (77), the value of I',,, when using a single-mode
discretization does not depend on b, in all three cases, I',; begins at the same value of 559 112.6.
For the case ab’> = %, we find that I',, quickly converges to the solution of the direct approach
I'*, =335392.4 as we use more than one mode in the discretization. The relative errors when
using single-, two-, three-, and ten-mode discretizations are 66.7%, 3.8%, 1.8%, and 0.013%, as
shown in Fig. 7(b). For the case ab”> = 2, the single- and two-mode discretizations give relatively
close results. However, when using three or more modes, I'.; increases significantly, and after
retaining 16 modes it approaches I'%, = 1015797.4. In this case, the percent errors when using
single-, two-, three-, and ten-mode discretizations are 45.0%, 49.6%, 5.7%, and 0.017%,
respectively, as shown in Fig. 7(b). In both of these cases, the values of I',; > 0, and therefore the
effective non-linearity of the first antisymmetric in-plane mode is hardening.

When ab? = 4, we find from Fig. 7(a) that I',, >0 when using single-, two-, and three-mode
discretizations. However, using four- or higher-mode discretizations, we find that I',; <0, and
when we retain 16 modes, I',o = —283281.91. The corresponding value of I'}, = —283357.1.
Therefore, in this case, the error due to single-mode discretization is qualitative as well as
quantitative. That is, for this case, the single-mode discretization predicts the effective non-
linearity of the first antisymmetric in-plane mode to be hardening, when in fact it is softening.

To further illustrate this point, we show in Fig. 8 typical frequency-response curves when
ab> =4, Fj» = 0.001, and yu;, = 0.02. The curves for the single- and two-mode discretizations
indicate a relatively very hardening behavior. However, this hardening behavior significantly
diminishes when using a three-mode discretization. And, if a fourth mode is included in the
discretization, the frequency-response curves bend to the left, indicating a softening behavior.
This softening behavior is also demonstrated by the curves obtained with the direct approach.
Furthermore, we show in Fig. 9 typical force-response curves when ab?> = 4, ¢ = 0.1, and u,, =
0.02. The curves obtained using single- and two-mode discretizations are quite close to each other.
Retaining a third mode, we find that a considerable shift in the saddle-node bifurcations occurs.
However, with the inclusion of a fourth mode, the saddle-node bifurcations vanish and the
amplitude @, becomes monotonously increasing with Fj,; that is, a characteristic change in the
force-response curves, which closely match those obtained with the direct approach, occurs. The
percent errors when using single-, two-, three-, four-, and ten-mode discretizations are 297.3%,
293.3%, 138.9%, 10.4%, and 0.13%, respectively, as shown in Fig. 7(c).

The influence of ab? on I',, is presented in Fig. 10. These same results also apply to the effective
non-linearity coefficient 4., when the second out-of-plane mode is excited near primary
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Fig. 8. Typical frequency-response curves for primary resonance of the first antisymmetric in-plane mode when
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respectively.

0.008
0.006 — T
< 0.004 — 2-mode
i 1-mode
e 4-mode
0.002 — s Direct
O T I T I T I T
0 0.001 0.002 0.003 0.004

Fio

Fig. 9. Typical force-response curves for primary resonance of the first antisymmetric in-plane mode when ab® = 4,
o =0.1, and u;, = 0.02. Solid (—) and dotted (---) lines denote stable and unstable fixed points, respectively.

resonance, as will be discussed in the subsequent section. Results when using the direct and
discretization approaches (single-, two-, three-, and five-mode) are presented in Fig. 10. For
ab? €[0, 10], the results for I'*, contain a singularity at the second crossover which corresponds to
the autoparametric resonance w3 ~2w;. Similar singularities also occur at the fourth, sixth, etc.,
crossover points. Using a single-mode discretization, we find that the value of I',; remains
constant for any value of «b?. Using a two-mode discretization, we find that I',, is sensitive to ob?
for very shallow suspended cables (e.g., ab> < 1). However, as ab”> becomes larger, the results of the
two-mode discretization very quickly approach the constant value obtained from the single-mode
discretization. Neither of these two discretization approaches take into account the second
crossover. The three-mode discretization yields good agreement with the direct approach for up to
ab”> ~2. However, as with the two-mode discretization, its results also approach the results of the
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Fig. 10. The coefficient I',; (A.7) of the effective non-linearity of the first antisymmetric in-plane (out-of-plane) mode as
a function of ab?> when o = 239.16.

single-mode discretization for «b®>3. Therefore, for results that closely match I'%, over
ab?€[0, 10], a five-mode or higher discretization is necessary, as shown in Fig. 10.

6. Primary resonance of an out-of-plane mode

We consider here the cable’s response when the mth out-of-plane mode is excited harmonically
near primary resonance and assume that it is not involved in an autoparametric resonance with
any of the other modes.

6.1. Direct approach

In this case, we set f1(7Ty) = 0 and
S2(To) = F> cos(QT), (80)
where Q is related to /,, by
Q= A, +e¢o. (81)
Because the system is damped, the free response of the cable after a long time is given by

un(x, Ty, T, T>) = 0, (82)

ur1(x, To, Th, T2) = Y, ()[BT, T2)e™ 10 + B, (Ty, Tr)e 7], (83)
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Substituting Egs. (82) and (83) into Egs. (28) and (29), we find that B,, = B,,(T3) only, uy =0,
and

1
Diuyy — iy — ab?y" / Yy, dx = d4abQ,[(B2e* 10 + cc) + 2B, B,). (84)
0
The solution of Egs. (84) and (32) is
ui(x, To, T2) = Hi(x)(By,e™ ™ + c¢) + Hy(x) BB, (85)
where the functions H;(x) and H;(x) are governed by the following boundary-value problems:
1
HHM%www/ﬂmm:4mmbm@:mm:Q (86)
0
1
H)) + ab*y” / VH)dx = —8ubQu, Ha(0) = Hy(1) = 0. (87)
0

In Appendix B, we present the solutions of Egs. (86) and (87).
Next, we substitute Egs. (83) and (85) into Eq. (31), use Eq. (81), and obtain

. dB,,
D(z)u23 — u'z/3 = {—211,,1lp (dT + C2B )
1
+ ab {lpj; / YH dx+ ! | VH, dx] B2 B,
0

3 1 .
—i—oc( W /Wd >32 m+2FewT2}e'W°+cc+NST

2
= #(x, Tr)e" 10 + cc + NST. (88)
Then, letting
u(x, Ty, Tn) = Hs(x, To)e T + ¢c + NST (89)
in Eqgs. (88) and (32), we obtain
PH; o,
o2 T /mfls=—H(x,To),  H3(0) = H(1) =0. (90)

The homogeneous problem in Eq.(90) has non-trivial solutions, and therefore the non-
homogeneous problem has solutions provided that a solvability condition is satisfied. To this end,
we multiply Eq. (90) by the adjoint function /3(x), integrate the outcome by parts from x = 0to 1,
and obtain

{h3aH3] /H3(h”+,12h3)dx_ /h3jfdx 1)

Following the same procedure used in Section 5.1, we find that the adjoint A3(x) = ¥,,(x) and
consequently, the solvability condition is given by

1
| o ax—o 92)
0
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Then, from Egs. (18), (88), and (92), we obtain the following equation for B,,(T5):
dB,,

- 1 .
g [ =2 B, | + A* B2B, =~ Fy,cT 93
1 (dT2 + Uy ) + Aembm 2 2m€ > ( )

where F,,, = fol Foy,, dx and the coefficient A%, of the effective non-linearity for the mth out-of-
plane mode is given by

3 1
A% zich,an + ochmm/ Y'(H| + Hy)dx
0

3 a4 8o2b*m*nt(48ab? + 3 — 2m*n?)

2 (16ab? + 3)(160b* — m2n?)
We note from Eq. (94) that the solution becomes nonuniform when 12, = m?r?~ 16ab?; that is,
near the mth crossover. In addition, the overall response of the cable is given by

wi(x, 1) = 32, [H(x) cos(2mt + 2B) + 3 Ha(x)] + O(&), (95)

m=1,23,.... (94)

Ur(X, 1) = e, (Xt COS(nt + fi) + OCEY). (96)
Therefore, even though only the mth out-of-plane mode is directly excited and there is no
autoparametric resonance between it and any other mode, the motion of the cable has a non-
trivial component in the in-plane direction. This is a direct consequence of the sag in the cable.

6.2. Discretization approach

Here, we set

N =0 Vk, 97)

ot = Bu(T1, T2)e ™0 + ce, (98)
{1 =0 Vi#m, (99)
Ju(To) =0 Vk, (100)
Sa(Ty) = Facos(QTy) VI, (101)

where Q is related to 4,, by Eq. (81). We substitute Egs. (97)—(99) into Egs. (40) and (41), set
0B,,/0T, = 0, solve for the 1, and {;;, and obtain

N = Ex(B2e** T + cc) + Ey BB, Vk, (102)
{p=0 VI, (103)
where
1 Uk Qmm Uk Qmm
E}k = E ob (m) and E4k = ob <T£ . (104)

It follows from Eqgs. (102) and (104) that this expansion is non-uniform if wj; ~24,,, corresponding
to the mth crossover. This case of two-to-one autoparametric resonance between an in-plane
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mode and an out-of-plane mode was investigated by Visweswara Rao and Iyengar [17], Lee and
Perkins [18], and Perkins [19] for different excitation conditions. In all three cases, the method of
multiple scales was applied to a set of non-linear ordinary-differential equations which were
obtained from a two-mode Galerkin discretization procedure.

Noting that near crossover points, the one-to-one autoparametric resonances wy,_1 ~ Wy = A
also exist, Benedettini and Rega [20], Benedettini et al. [21], Lee and Perkins [22], Rega et al. [23],
and Nayfeh et al. [13] investigated the influence of the simultaneous autoparametric resonances
w1 ~2 = wy = Ay on the responses of suspended cables for different excitation conditions. In the
first three works [20-22], the authors applied the method of multiple scales to a set of non-linear
ordinary-differential equations which were obtained from a four-mode Galerkin discretization
procedure. In the last two works [23,13], the authors applied the method of multiple scales directly
to the governing partial-differential system.

Next, we substitute Eqgs. (97), (99), (101), and (103) into Eq. (43), set / = m, and obtain the
following equation for ,,3:

D%Cm} + 1314,7113 = - 2D0D2le - 2H2mDOCHﬂ oCQmm ml

+ @b Y [(Qum Ui t2] + Fam cos(2Tp). (105)
r=1
Then, substituting for {,,; and n;, from Egs. (98) and (102) into Eq. (105), using Eq. (81), and
setting the terms that produce secular terms equal to zero, we obtain the following equation for
Bm(T2):

. dB, _ 1 .
21/N{m <dT1 + 2mB ) + AemBlzﬂBm - EFZMeIJTZa (106)
where m = 1,2,3, ... . The coefficient A,,, of the effective non-linearity of the mth out-of-plane

mode is given by

s w? — 872
—OCQmm b’ ’Z:: (QmmU) 2(2—4/%4) . (107)

Substituting for the U,, Q,.,, and 4,,, we reduce Eq. (107) to the following:

3 m*nt I [K2w?(3w? — 8m*n?)
Ao = Zom*n* — LT Vm. 108
2 T 128 r=odd|: (F — 4nP7?) } " (108)

The corresponding solution for the response of the cable is
1 = . 1
u(x, 1) = 3¢ a2 Z {q’)r(x) [Ey cos(24,t + 2f,) + §E4,~] } + O(&%), (109)
r=odd

Un(X, 1) = &, (Xt COS(nt + i) + O(EY). (110)

Comparing Egs. (109) and (110) with Egs. (95) and (96), we find that the solutions from the
discretization and direct approaches match if > . Es¢,(x) = Hi(x) and Y2 ., E4d,(x) =
Hz(x).
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6.3. Results and comparison

We note that if A, A% >0, then the effective non-linearity of the mth out-of-plane mode is of
the “hardening” type and if A, 4%, <0, then the effective non-linearity of the mth out-of-plane
mode is of the “softening” type. In addition, Egs. (94) and (108) are the same as the expressions
we have obtained for I'* and I',, when the mth antisymmetric in-plane mode is excited near
primary resonance. Therefore, the results of Figs. 7 and 10, which we have discussed in Section 5
for I'.y, also apply to A, (i.e., primary resonance of the second out-of-plane mode).

Consequently, we consider here the primary resonance of the first out-of-plane mode and
present in Fig. 11 results for the three cases: ab® = % (left of first crossover), ab® = 2 (right of first
crossover), and ab? = 4 (right of second crossover), where we take o« = 239.16. In all three cases,
the value of A,; = 34944.5 when using a single-mode discretization.

When ob? = %, the value of 4., jumps up to 70 841.0 when we use a two-mode discretization.
Retaining more modes in the discretization, the value of A, quickly approaches the value
obtained from the direct approach A% = 67844.1. Replacing I" by 4 in Eq. (79), we calculate the
relative errors when using single-, two-, three-, and ten-mode discretizations as 48.5%, 4.4%, 0.4%,
and 0.004%, respectively, as shown in Fig. 12(a).

Taking ab> = 2, we find that when we use a two-mode discretization, A,; drops to 24 300.7.
Using a three-mode discretization, A,; drops even further to —605.3. Continuing to add more
modes in the discretization, we find that A, approaches A% = —3198.0. The percent errors for
single-, two-, three-, and ten-mode discretizations are 1192.7%, 859.9%, 81.1%, and 0.34% (Fig.
12(b)), which indicate very significant quantitative discrepancies when using three modes or less in
the discretization. More importantly, the errors in this case are also qualitative, indicating a
hardening effective non-linearity when in fact it is softening.

Overall, the results for ab> = 4 are similar to the previous case. Using four modes or less in the
discretization, the effective non-linearity is predicted to be hardening, whereas, in fact, it is
softening, as indicated by the direct approach result A¥ = —1080.7. The percent errors when

0 M e e E i i i
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Fig. 11. The coefficient A,; of the effective non-linearity of the first out-of-plane mode as a function of the number
modes retained in the discretization when o = 239.16 and the cases ab> =1 (—e—), ab?> =2 (—-4-), and ab® =4
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Fig. 13. The coefficient A,; of the effective non-linearity of the first out-of-plane mode as a function of ah?> when
o = 239.16.

using single-, two-, three-, four-, five-, and ten-mode discretizations are 3333.5%, 3078.5%,
1745.1%, 153.76%, 38.0%, and 2.1%, respectively (Fig. 12(b)). These values emphasize the need
to include a sufficiently large number of modes in the discretization in order to obtain accurate
results.

In Fig. 13, we show the influence of ab> on A, when using the direct and discretization
approaches. Results for single-, two-, three-, and five-mode discretizations are included. The
results for A% contain a singularity for ab?* =n?/16; this corresponds to the two-to-one
autoparametric resonance w; ~24; which occurs at the first crossover.

The single-mode discretization results in Fig. 13 are constant over «b?, and hence do not account for
this singularity. Using two-mode or three-mode discretizations, we find relatively good agreement with
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the results of the direct approach when ab”> <0.5. However, for larger values of ah?, the results from
these two discretizations deviate from A% and tend to the result of the single-mode discretization. The
five-mode discretization yields good agreement with A% but also loses some accuracy for ab? > 6,
indicating more modes should be retained in the discretization for large values of ab?.

7. Summary

We investigated the non-linear responses of shallow suspended cables to primary resonance
excitations and considered both in-plane and out-of-plane motions. We assumed that the directly
excited mode is not involved in an autoparametric resonance with any of the other modes and used
the method of multiple scales to obtain second-order approximations of the solutions. To this end,
we followed two approaches. In the first, we applied the method of multiple scales directly to the
partial-differential equations of motion and associated boundary conditions (direct approach). In
the second, we applied the method of multiple scales to a set of non-linear ordinary-differential
equations, which were obtained by the Galerkin discretization procedure (discretization approach).

We investigated the influence of the number of terms retained in the discretization procedure on
the accuracy of the predicted effective non-linearity, and hence the cable response. We found out
that in all cases, only the symmetric in-plane modes contribute to the effective non-linearity. We
also compared the solutions obtained from the direct and discretization approaches and presented
results for the following cases: (a) Q~w; (b) Q~w;, (¢c) 2~ 4; and (d) 2~ 1,. We found out that
using a single-mode discretization can lead to significant quantitative errors in estimating the
value of the effective non-linearity. In some cases, two- and three-mode discretizations can lead to
as much errors as a single-mode discretization. Moreover, we found out that a single-mode
discretization may result in qualitative errors by predicting that the effective non-linearity is
hardening, when in fact it is softening. In all cases, however, the solutions converge onto the direct
approach solutions once enough modes are retained in the discretization procedure.

Appendix A. Calculating the functions G(x) and G>(x)

The functions G;(x) and G,(x) are governed by Egs. (53) and (54). Depending on the type of the
in-plane mode being excited (symmetric or antisymmetric), different solutions are obtained.

A.1. Primary resonance of a symmetric in-plane mode

For primary resonance of the mth symmetric in-plane mode, Eq. (53) becomes
G + 4w? Gy = ab(c) — 4Py + abicy,@? Uy, c08(,X)

+ abKp 2, Uy, tan (%) sin(w,,x), (A.1)

where ¢; 1s a constant defined as

1 1
€] = —by”/ y'Gdx = 32b/ (1 —2x)G| dx. (A.2)
0 0
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The general solution of Eq. (A.1) is
Gi(x) = a1 sin(Rw;,x) + az cosw,,x) + dy + ds sin(w,,x) + ds cos(w,,x),
where

_ OCb(cl - 4Pmm)
B 42,

dl s d2 = Rm tan <%) 5 d3 = Rm

2
and
Ry = Yobicy, Uy,
Next we apply the boundary conditions G;(0) = G;(1) = 0 and obtain

4 (d\ 4+ d3) cosQw,,) — dy — d5 sin w,,, — d3 cos w,,
1 =

o) . ay = —(di + d3).
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(A.3)

(A.4)

(A.5)

(A.6)

Then, we substitute Eq. (A.3) into Eq. (A.2), solve for ¢, and substitute the result back into the

first of Egs. (A.4) to get the following final expression for d;:

B[ Py €OS @, + 326 R, tan(2) sinz(“’{)]

d, =
: cos W[ 16ab*(w,, — tan wy,) — w3 ]

Similarly, Eq. (54) for G,(x) reduces to
G = ab(cy — 8Pyum) + 20b1,,0%, Uy, cOS(@,,X)

w )
+ 2ocb1<mco,2n U, tan (%) sin(w,;Xx),
where

I I
€= —by”/ V'Gydx = 32b/ (1 —2x)G) dx.
0 0

The solution of Eq. (A.8) is given by
Go(x) = a3 + asx + dux’ + ds sin(w,,x) + dg cos(wm,x),
where

| D
dy = 5abc; = 8Ppn).  ds = —6R,, tan (7) ds = —6R,,

Applying the boundary conditions G»(0) = G,(1) = 0, we obtain

a3 = —ds and a4 = (dg — dy) — ds sin w,, — dg cos wy,.

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

Substituting Eq. (A.10) into Eq. (A.9), solving for ¢,, and then substituting the result into the first

of Egs. (A.11), we obtain the following final expression for dy:
3(4ab P, — 3(031Rm)

di, =
4 (1602 + 3)

(A.13)
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A.2. Primary resonance of an antisymmetric in-plane mode

For primary resonance of the mth antisymmetric in-plane mode, we set U,, = 0 in Eq. (53) and
obtain

1
G} + 40?2, Gy + ab®y” /0 V' G, dx = —40abP,,,. (A.14)
Eq. (A.14) can be rewritten as
G} + 4w’ Gy = ab(c) — 4Ppp), (A.15)
where ¢ is defined by Eq. (A.2). The solution of Eq. (A.15) is given by
G1(x) = as sin2w,,,x) + ag cosLw,, x) + d7, (A.16)
where
Od7(cl - 4Pmm)
=——~ A.l
=" (A17)
Using the boundary condition G;(0) = 0, we obtain ag = —d;. In this case, however, the second

boundary condition G;(1) = 0 yields the same condition on ag, and hence as remains unknown.
To determine as and render the solution unique, we require that the solution G;(x) be orthogonal
to the adjoint function g;(x). To this end, we multiply Eq. (A.14) by ¢g,(x), integrate by parts from
x =0 to 1, and obtain

1

1 1 1
[glG{ — ocb2g1y’( /0 V'G dx)] —i—/o G, [g’l' + 4w gy +ocb2y"/0 g, dx} dx
0
1
= dobPy, / g1 dx. (A.18)
0

Then, we solve the homogeneous problem in Eq. (A.18) and obtain g(x) = \/5 sin(2w,, x).
Consequently, the constraint fol g1G1 dx = 0 yields as = 0. Next, we substitute Eq. (A.16) into
Eq. (A.2), solve for ¢, determine d7 from Eq. (A.17), and obtain the final expression for G(x) as

Gi(x) = 14:2’;%";}%1 [1 — cos(2wyx)]. (A.19)
To determine G»(x), we set U,, = 0 in Eq. (54) and obtain
Gy = ab(cs — 8Pym), (A.20)
where ¢, is defined by Eq. (A.9). The solution of Eq. (A.20) is equal to
Gy (x) = a7 + agx + % ab(cy — 8Ppm)x>. (A.21)

Using the boundary conditions G>(0) = G»(1) = 0 to determine a; and ag and then substituting
the results into Eq. (A.9) to determine ¢,, we obtain the following final expression for G>(x):

120D Py

) = 1o 13

(x* — x). (A.22)
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Appendix B. Calculating the functions H;(x) and H;(x)

The function H;(x) is governed by Eq. (86), which we rewrite as
H + 422 Hy = (c3 — 44D Qpm), (B.1)

where
1
3= —acbzy"/ Y Hi dx. (B.2)
0

Using the boundary conditions H;(0) = H;(1) = 0, the solution of Eq. (B.1) is

(C3 - 4OCan1m)
4,2

m

H{(x) = ay sin(24,,,x) + [1 — cos(24,,x)]. (B.3)

Then, substituting Eq. (B.3) into Eq. (B.2) and solving for ¢3, the expression for H;(x) becomes

ab Qmm

Hi(x) = ag sin(2A;,x) + ——————
109 = o Sin(22) 4 g

[1 — cos(27,,x)]. (B.4)

To calculate a9 and determine a unique solution, we require that the solution H;(x) be orthogonal
to the adjoint function /4(x). To determine the adjoint, we multiply Eq. (86) by /;(x), integrate by
parts from x = 0 to 1, and obtain

1

1 1 1
[th{ —ab’hyy </ V' H, dx)} +/ H, [h'l' + 4/1,2,1}11 + ocbzy”/ ny' dx} dx
0 o Jo 0

1
—  4b O /  dx. (B.5)
0

Then, we solving the homogeneous problem in Eq. (B.5) and obtain /;(x) = \/5 sin(24,,x).

Consequently, the constraint fol hiH; dx = 0 yields a9 = 0, and therefore the final expression for
H] (X) 1S

amem
Hi(x) = —————[1 — cos(24,,x)]. B.6
(0= g 51— €082 (B.6)
The function H»(x) is governed by Eq. (87), which we rewrite as
Hg = (C4 - 8O‘an1m)a (B7)

where
1
4 = —ocbzy"/ V' H, dx. (B.8)
0

Integrating Eq. (B.7) twice, using the boundary conditions H»(0) = H»(1) =0, and then
substituting the result into Eq. (B.8) to determine ¢4, we obtain the final expression for H,(x) as

1200 Qi

) =6 1 3)

(x — x?). (B.9)
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